Battle Forum

Battle Forum (http://battlefox.rooty.ru/index.php)
-   Глобус (http://battlefox.rooty.ru/forumdisplay.php?f=55)
-   -   Новости науки (http://battlefox.rooty.ru/showthread.php?t=4321)

Agent 007 07.08.2007 13:37

Новости науки
 
Здесь можно оставлять последние сведения о достижениях из мира науки.


Впервые создан беспорядочный магнит.

Цитата:

Впервые удалось создать ферромагнетик с беспорядочным магнитным полем внутри. Первые же эксперименты подтвердили давно предсказанные теоретиками необычные свойства этого магнита.

Магнетизм удается успешно описывать на редкость простыми математическими моделями.

Магнетизм интересует физиков по разным причинам. Прежде всего, из-за многочисленных практических приложений, реализация которых требует глубокого понимания явления. Во-вторых, потому что он помогает лучше понять свойства материалов на атомном уровне — ведь магнетизм в веществе возникает из-за сложного устройства и взаимодействия электронных оболочек соседних ионов. Наконец, в отличие от многих других областей материаловедения, магнетизм можно промоделировать с помощью простых, но очень емких теоретических конструкций, например спиновых цепочек. А это значит, что иногда путь от математических изюминок в этих конструкциях до эксперимента может оказаться на удивление коротким.

В недавней статье, появившейся в журнале Nature, сообщается, фактически, об открытии нового направления в экспериментальной физике магнитных явлений. Исследователи из США и Великобритании впервые в мире создали беспорядочный магнит, который теоретики придумали 40 лет назад, и уже первые эксперименты подтвердили предсказанные теоретиками забавные свойства этого магнита.

Но сначала несколько слов о ферромагнетизме. Ферромагнетик (то, что в повседневной жизни называется просто магнитом) содержит такие атомы, электронные оболочки которых обладают собственным магнитным моментом. Образно выражаясь, каждый атом похож на маленький магнитик со своим «северным» и «южным» полюсом. Находясь в кристалле, он взаимодействует со своими соседями и стремится развернуться в согласии с ними, из-за чего весь кристалл целиком становится намагниченным.

Однако при повышении температуры тепловые колебания атомов начинают расшатывать эту строгую упорядоченность — начинается борьба порядка и теплового беспорядка. Максимальная температура, до которой магнетизм еще «держится», называется точкой Кюри; при более высоких температурах тепловой беспорядок пересиливает, и спонтанная намагниченность пропадает.

Свойства вещества в непосредственной близости к точке Кюри чрезвычайно заинтересовали теоретиков. Оказалось, что вещество в этом случае становится «критическим» — в нём появляется самоподобность, и оно реагирует на внешние возмущения не на уровне атомов, а целиком огромными областями.

Начав разбираться с этой задачей, теоретики поняли, что есть еще один способ внести в задачу беспорядок — поместить образец в хаотическое поперечное магнитное поле. В таком магните тоже может возникнуть критическое состояние, но со своими особенностями. Например, в 1969 году Роберт Гриффитс предсказал, что магнитная восприимчивость такого магнита (то есть то, насколько сильно он намагничивается в том или ином поле) будет зависеть от силы внешнего поля не плавно, как это обычно бывает, а с резким изломом.

Благодаря симметрии, в строго периодической решетке не возникает никаких поперечных полей. Однако если часть магнитных ионов гольмия (Ho) заменить на немагнитные ионы иттрия (Y), появятся беспорядочно ориентированные поперечные поля (адаптированное изображение из обсуждаемой статьи)
Благодаря симметрии, в строго периодической решетке не возникает никаких поперечных полей. Однако если часть магнитных ионов гольмия (Ho) заменить на немагнитные ионы иттрия (Y), появятся беспорядочно ориентированные поперечные поля (адаптированное изображение из обсуждаемой статьи)

Такую особенность, получившую название «сингулярность Гриффитса», экспериментаторы до сих пор не могли «нащупать», и их можно понять. Ведь для того, чтобы получить такой магнит, надо создать хаотическое магнитное поле. Но как это сделать? В 1970-е годы возникла идея внедрить в магнит «чужеродные» атомы, которые и изменят магнитное поле внутри кристалла. Эту идею уже даже применили к антиферромагнетикам — веществам со «скрытым магнетизмом», — но только сейчас, в описываемой работе, удалось реализовать ее для настоящего магнита.

Для своих экспериментов авторы научились создавать кристаллы с общей формулой LiHoxY1-xF4 с разным значением числа x (x = 1,0, 0,65 и 0,44). В таком кристалле ионы лития (Li) и фтора (F) играют роль каркаса, а магнитные ионы гольмия (Ho) обеспечивают ферромагнетизм. В случае, когда x не равно единице, часть мест, «предназначенных» для гольмия, занимают немагнитные ионы иттрия (Y) — то есть строгая периодическая решетка магнитных ионов оказывается как бы «разбавлена» немагнитными примесями.

Такое внедрение немагнитных примесей кардинально влияет на магнитное поле внутри кристалла. Если раньше, при x = 1, из-за строгой симметрии никакого поперечного поля внутри вещества не было, то теперь то там, то тут возникало нескомпенсированное поперечное поле. А так как ионы примеси расположены в кристалле хаотично, то это поперечное поле тоже беспорядочно менялось от места к месту — как раз то, что и требовалось создать!

Очень важный момент: сила этого беспорядочного поля внутри кристалла не фиксирована, ею можно легко управлять с помощью внешних полей. А это значит, что все свободные параметры задачи можно настроить так, как хочется экспериментатору, и проверить давние предсказания теоретиков.

С этой задачей экспериментаторы справились блестяще. Они научились контролировать силу хаотического магнитного поля в очень широком диапазоне, покрывавшем пять (!) порядков. График полученных данных показал четкий излом — как раз проявление сингулярности Гриффитса. Авторы пишут, что они использовали одну из самых простых методик изучения ферромагнетиков. Применение гораздо более чувствительных методик позволит узнать устройство и поведение этого «беспорядочного магнита» во всех деталях.
http://elementy.ru

Agent 007 11.08.2007 14:24

Реализована сверхминиатюрная и ультрабыстрая рентгеновская голография.


Цитата:

Продемонстрирован в действии новый метод исследования вещества — рентгеновская голография на масштабе в десятки нанометров с временным разрешением в доли пикосекунды. В перспективе возможна голографическая визуализация атомных процессов.

Типичная голограмма взрывающегося шарика субмикронных размеров. Обработав ее, можно получить как распределение яркости, так и фазовую картину. Изображение из обсуждаемой статьи.

Фотографирование предметов — самый простой способ запечатлеть информацию о форме исследуемого предмета. Однако рассматривая фотографию, человек видит лишь точки на фотографии, но не сами предметы. Пространственный ход лучей от расположенных поодаль предметов и от фотографии с их изображением — разный.

С точки зрения физики, ход лучей в пространстве определяется распределением фазы световой волны. При фотографировании сохраняется лишь информация о яркости света, а распределение фаз теряется. Именно поэтому свет от фотографии расходится совсем не так, как изначально он шел от предметов.

Распределение фазы можно запечатлеть с помощью голографии. В этом методе экран (фотопленка, матрица цифровой камеры, и т. д.) освещается одновременно двумя лучами: прямым опорным лучом, а также регистрирующим лучом, который предварительно отразился от предмета. Накладываясь, эти два луча интерферируют, и на экране появляются светлые и темные полосы или иные области замысловатой формы. Интерференция — это волновое явление, и поэтому она чувствительна к фазе световой волны. Яркость и расположение этих светлых и темных областей как раз кодирует полную информацию о предмете, принесенную регистрирующим лучом.

Теперь эту интерференционную картину можно запечатлеть на негатив, а затем осветить его «восстанавливающим» лучом света. Пройдя сквозь голограмму, он создаст распределение световых лучей в пространстве, полностью идентичное картине световых лучей при записи. Световые лучи будут идти ровно так же, как если бы предметы действительно были. Рассматривая такое распределение света, человек увидит настоящее трехмерное изображение.

Всё это хорошо отработано на обычных, макроскопических предметах. А можно ли получить голограмму микроскопических объектов? живой клетки? отдельной молекулы?

В последнем выпуске журнала Nature появилась статья, рывком перебрасывающая голографический метод исследования в мир нанометровых размеров. Большая группа американских, шведских и германских физиков, используя рентгеновский лазер на свободных электронах, сумела получить голограммы объектов размером в сотни нанометров. И более того, на этих голограммах запечатлен вовсе не неподвижный предмет, а сверхбыстрый процесс — взрыв субмикронного полистиролового шарика — длительностью всего лишь несколько пикосекунд!

Пожалуй, самой поразительной особенностью этой работы является простота установки. Достаточно приготовить специальную слоистую мишень, настроить рентгеновский лазер (это установка FLASH в германском исследовательском центре DESY) и подставить цифровую камеру рентгеновского излучения, а дальше всю работу берет на себя мощный и очень короткий рентгеновский импульс. Он сам инициирует взрыв шарика, а также играет роль как опорного, так и регистрирующего луча при получении голограммы. Постановка эксперимента настолько изящна, что на ней стоит остановиться подробнее.

Вначале экспериментаторы приготовили мишень-«слойку». Она состояла из специального зеркала, отражающего мягкие рентгеновские лучи, и тонкой пленки с налипшими на нее полистироловыми шариками. Пленка располагалась чуть впереди зеркала; зазор между ними можно было изменять от 0,03 мм до 1,2 мм. Прямо на эту слойку падал очень короткий и мощный импульс рентгеновского излучения, и при этом происходила цепь интересных явлений (см. рисунок).

Когда импульс достигал пленки, полистироловый шарик поглощал часть излучения, его температура резко повышалась, и за несколько пикосекунд он взрывался. Однако с точки зрения рентгеновского импульса этот взрыв длится довольно долго. Импульс за это время успевает дойти до зеркала, отразиться обратно и вновь пройти сквозь взрывающийся шарик. Время, которое импульс затрачивает на этот путь, зависит от ширины зазора: чем он шире, тем больше задержка, и значит, тем в более поздней стадии взрыва импульс «увидит» шарик на пути обратно.

При такой методике зеркало нужно только лишь для фиксированной задержки между двумя моментами прохождения. После первого прохождения появляется опорная волна (синяя полоска на рисунке), а после второго — «предметная» волна (красная полоска). Эти две волны накладываются и интерферируют друг с другом. Импульс затем доходит до цифровой камеры и оставляет в ней изображение интерференционных полос. Получается самая настоящая рентгеновская голограмма взрывающегося шарика в какой-то определенный момент времени после начала взрыва.

Эксперимент, проведенный по такой методике, конечно, одноразовый. Один-единственный импульс взрывает не только пленку с полистироловыми шариками, но и то место на зеркале, куда он упал. Однако авторы работы, запасясь множеством таких «слоек», проводили опыт за опытом, каждый раз слегка изменяя зазор между пленкой и зеркалом. В результате они получили последовательность голографических снимков с шагом по времени в доли пикосекунды.

Методика, конечно, красивая, но можно ли с помощью нее получать какую-то новую информацию о наблюдаемом процессе (т. е. о взрыве шарика)? Да, и авторы работы это убедительно доказали. Обработав полученное изображение, они отдельно выделили «картину яркости» и «фазовую картину». Они проследили процесс взрыва, используя вначале только «картину яркости» (т. е. то, что доступно и другим методикам), а затем — только фазовую картину. Оказалось, что как динамика, так и форма взрыва шарика видны на фазовой картине гораздо подробнее и с существенно лучшим временным разрешением.

Какие перспективы вырисовываются у этой методики? Во-первых, уже в таком виде она позволяет увидеть в виде объемного изображения ультрабыстрые процессы на субмикронном масштабе расстояний, вызванные мощным излучением. Если же запускать быстрый процесс каким-то иным способом, а импульсу оставить только роль «рентгеновской вспышки», то можно попытаться голографически разглядеть, например, динамику формирования трещин в хрупких телах или сверхбыстрые фазовые превращения в ударных волнах.

Во-вторых, нет никаких принципиальных ограничений на дальнейшее уменьшение размеров предметов и длительности процессов. Описанные опыты проводились с лазером на длине волны 32 нм, но уже сейчас есть лазеры с длиной волны всего 2 нм, а в будущем можно рассчитывать и на атомные размеры. Уменьшить длительность импульса до нескольких фемтосекунд (а это характерный период колебаний отдельных атомов) тоже не составит проблемы. Всё это позволит голографически увидеть в динамике поведение отдельных молекул.
http://elementy.ru

LiO 14.08.2007 14:17

Околонаучные споры....
 
Вложений: 1
Вложение 23251
Сэр Исаак Ньютон. Портрет работы Готфрида Кнеллера. Изображение Wikimedia Commons.


Оспорено первенство Ньютона в открытии "бесконечного ряда"

Цитата:

По мнению британского исследователя индийского происхождения Джорджа Джозефа, значительная часть открытий Ньютона и Лейбница в области математического анализа была сделана примерно за триста лет до их рождения представителями малоизвестной научной школы на юго-западе Индии на территории современного штата Керала, сообщается в пресс-релизе Манчестерского университета.

Джозеф полагает, что понятие "бесконечного ряда" - одно из ключевых понятий математического анализа - было введено в школе Керала около 1350 года, в то время как обычно считается, что его ввели Исаак Ньютон и Готфрид Лейбниц в конце семнадцатого века. Кроме того, в школе Керала знали ряды, сходящиеся к числу пи, и пользовались ими для вычисления пи сначала до десятого, а потом до семнадцатого знака после запятой.

Это знание, по словам Джозефа, могло попасть в пятнадцатом веке от индийских ученым к образованным миссионерам-иезуитам, которые живо интересовались математикой, поскольку перед церковью стояла задача модернизации календаря, а все путешественники были заинтересованы в улучшении навигационных приборов. Ньютон, вероятно, узнал о бесконечных рядах уже от иезуитов.

Доказательство своей гипотезы Джозеф выстраивает на анализе древних рукописей индийских математиков. По его словам, их имена, в частности, Мадхава (Madhava) и Нилакантха (Nilakantha), должны стоять рядом с именем Ньютона.

Джордж Джозеф родился в штате Керала и прожил там до девяти лет. Большая часть его исследований и научно-популярных работ посвящена истории математики, главным образом ее неевропейским истокам. Джозеф ставит перед собой задачу доказать, что неевропейская наука незаслуженно обделена вниманием.
http://www.lenta.ru

KarnAth 14.08.2007 15:00

Оффтоп
Оффтоп LiO, если не еще раньше... Но об этом к египтологам


Совы лучше ориентируются по слуху в горизонтальной плоскости, чем в вертикальной.

Цитата:

Это открытие сделал нейробиолог Авинаш Бала из Университета Орегон. Он показал, что сова-сипуха более чутко реагирует на изменение положения источника звука по горизонтали, чем по вертикали.

Ученый использовал в своей работе эффект, открытый великим русским ученым Иваном Петровичем Павловым еще в 1920-х годах. Работая на собаках, Павлом заметил, что собаки инстинктивно реагируют на шум довольно определенным образом - у них напрягаются мышцы и расширяется зрачок.

Авинаш Бала использовал этот эффект при изучении реакции совы на появление нового звука. Он показал, что сипуха способна различить изменения в шуме при отклонении источника всего на 3 градуса по горизонтали, но на 7.5 градусов по вертикали.

Ученый также показал, какие именно нейроны в мозге совы отвественны за различение звука. При идентификации источника звука сверху, например, задействованы нейроны верхней части слухового центра в мозгу, и, наоборот, в различениии источника звука снизу задействованы нейроны нижней части слухового центра.

Пока не очень понятно, почему совы лучше слышат в горизонтальной плоскости. Возможно, потому, что совы охотятся в основном на грызунов, а мыши и полевки бегают по земле в горизонтальной плоскости.

Кстати, рефлекторное расширение зрачка в ответ на звук есть и у человека. Американский ученый надеется, что разработанный им метод может иметь и практическое применение - например, попытаться таким образом изучать реакции коматозных и психически больных людей, с которыми невозможно контактировать нормальным образом.
Bala, A. D. S., Spitzer, M. W. & Takahashi, T. T. PLoS ONE doi:pone.0000675 (2007). (я не читал %) пересказал А. Ермаков )

Agent 007 22.08.2007 19:43

Шумиха по поводу преодоления скорости света не имеет под собой научных оснований
 
Вложений: 2
Цитата:

Сообщение о преодолении скорости света, появившееся на днях во многих СМИ, является не сенсацией, а недоразумением. Оно основано на неправильной интерпретации давно известных опытов, которую уже 15 лет пропагандирует немецкий физик.

На днях многие СМИ запестрели заголовками: «Эйнштейн в очередной раз разоблачен», «Немецким ученым удалось превзойти скорость света», «Теория Эйнштейна устарела» и т. п. В этих заметках говорится о том, что в экспериментах двух немецких физиков, Гюнтера Нимца (Gunter Nimtz, он и является главным героем истории) и Альфонса Штальхофена, обнаружено сверхсветовое движение и тем самым опровергнута теория относительности Эйнштейна. Сообщение о «перевороте в физике» прошло даже по радио и телевидению. Исходным материалом для этих сообщений явилась заметка в New Scientist — научно-популярном журнале с информацией невысокого качества.

Далекий от науки, пусть и привыкший не доверять СМИ читатель может купиться на такое обилие сообщений и засомневаться — «а может действительно опровергли эту непонятную теорию относительности?» Что ж, расскажем вначале, что скрывается за этой историей, а затем немного поясним суть физической проблемы.

Откуда дровишки?

Бодрые заголовки в СМИ наводят на мысль, что авторам удалось поставить эксперимент какого-то нового типа, который никогда раньше не ставили и который впервые смог обнаружить сверхсветовое движение.

Но заглянем в статью (а точнее, препринт) немцев «Макроскопические нарушения специальной теории относительности», с которой и началась шумиха. Это текст на полторы страницы, в котором описание опыта занимает всего лишь несколько строчек. Казалось бы, эксперименту, который должен путем прямого измерения доказать, что импульс микроволнового излучения распространяется быстрее скорости света, должно быть уделено больше места. Однако в статье не приведено практически никаких существенных подробностей: ни параметров импульса, ни характеристик детектора, ни каких-либо графиков. Даже человека, не знакомого с научной литературой, это может удивить — разве так принято описывать результаты сенсационных экспериментов?

Разгадка проста. В этой работе вовсе и нет никакого нового эксперимента. В ней очень кратко описан известный опыт, который в разных вариациях многократно ставился в разных лабораториях — туннелирование микроволн через барьеры (подробности см. ниже). Его ставил в том числе и сам Нимц, именно поэтому он уже не вдается в детали при его описании. Если пройтись по списку публикаций Нимца, то можно увидеть, что этот же самый тип экспериментов он обсуждает уже свыше десятка лет. Впервые он его описывает в статье 1992 года J. Phys. I., France 2, 1693–1698 (кстати, статья находится в свободном доступе на сайте журнала), а затем повторяет это же обсуждение в разных вариациях в 1997, в 2001, в 2006 году.

Таким образом, ни новых экспериментов, ни новых результатов, ни даже новых выводов из известных результатов эта статья не содержит. В ней просто автор еще раз повторяет то, что уже многократно говорил последние 15 лет. Но если эти эксперименты действительно сенсационные, то почему о них молчали все это время?

На самом деле, о них не молчали, но только никакой сенсацией они не являются. Эта тема активно исследовалась уже десятки лет и продолжает изучаться сейчас. Достаточно сказать, что за последние десять лет появилось уже несколько больших обзоров свежих результатов по этой тематике (см. ссылки внизу) — ситуация, характерная для бурно развивающихся областей. Работы Нимца тоже активно обсуждались — и не нашли никакой поддержки. Поскольку его эксперименты очень простые и воспроизводимые, то выходит, дело не в них самих, а в их интерпретации. Это особенно заметно в тех случаях, когда Нимц придумывает интерпретации к чужим экспериментам, которые однозначно демонстрируют, что даже в самых экзотических случаях информация передается медленнее скорости света (см. статью Nature 425, 695–698 (16 October 2003) и последовавшую переписку Нимца с авторами статьи, опубликованную там же).

Получается, Нимц не предлагает каких новых опытов; он расходится с остальными физиками в интерпретации всеми воспроизводимых физических явлений. А именно, он считает, что теория относительности нарушается там, где остальные считают, что она не нарушается. (Такое положение вещей, кстати, само по себе может показаться странным; так это отчасти и есть, см. подробности ниже.)

Можно, конечно, попытаться представить ситуацию в том свете, что он прав, а все остальные — нет, но гораздо естественнее другой вывод. Не требуется быть большим ученым — достаточно хорошего университетского курса физики, — чтобы, почитав статьи Нимца, понять, что он просто плохо понимает физику. Несмотря на все свои регалии.

Суть проблемы

Теперь пояснение для тех, кто хочет немножко разобраться в том, почему эти простые эксперименты вызывают такой спор. Но вначале стоит сказать несколько слов по поводу теории относительности и ее якобы опровержения.

Во-первых, теория относительности основывается на постулате, что никакой материальный предмет и никакая передача информации не может происходить быстрее скорости света. Воображаемое движение образов, не являющееся перемещением материальных предметов и не передающее информацию, может происходить с любой скоростью. Самый известный пример — пятно от быстро вращающегося лазера на достаточно далекой стене.

Во-вторых, надо понимать, что теория относительности была в свое время взята не с потолка, а как бы угадана из сформулированных в конце 19 века свойств электричества и магнетизма. Если бы в этих опытах с микроволнами нарушалась теория относительности, то это означало бы ни много ни мало крах электродинамики — ведь Нимц утверждает, что обнаружил сверхсветовое перемещение сигнала в опытах с классическими (т. е. не-квантовыми) электромагнитными волнами.

Впрочем, за электромагнетизм можно не бояться. Свойства классических электрических и магнитных полей проверены и перепроверены уже миллионократно, во всевозможных ситуациях и экзотических устройствах. В том числе, они многократно проверялись и с микроволнами в таких радиотехнических устройствах, как резонаторы и волноводы. И никогда не было намека на то, что уравнения Максвелла — описывающие электрические и магнитные поля — хоть в чем-то нарушались.

В-третьих, часто можно услышать «а почему вы считаете, что теория относительности абсолютно верна?» с дальнейшим развитием в том направлении, что-де закостенелые официальные физики боятся даже подумать о возможности нарушения теории относительности.

На самом деле это не так. Активно изучаются варианты устройства нашего мира, в которых теория относительности слегка нарушается. Слегка — это потому что, нарушив ее сильно, тут же приходишь к противоречию с многочисленными экспериментальными фактами. Один из примеров такой теории обсуждался в заметке Ну очень специальная теория относительности, но есть и немало других примеров.

Так что «подправлять» теорию относительности никто не запрещает, но осмысленно это делать лишь в той области, где она еще не проверена. А в микроволновой радиотехнике она, еще раз повторюсь, перепроверена вдоль и поперек.

Теперь перейдем к сути проблемы. В этих экспериментах изучается процесс туннелирования волн через область, в которой они не могут свободно распространяться. Слово «туннелирование» навевает мысли о квантовой механике, но на самом деле это совершенно общее свойство всех волн — будь то микрочастицы, световые волны, микроволновое излучение или звуковые волны.

Во всех этих случаях можно сконструировать такое устройство, в котором два «проводника волн» разделены зазором, в котором волны затухают, т. е. неспособны распространяться бесконечно далеко. Для электрона это может быть потенциальный барьер, для света — нарушенное полное внутреннее отражение (см. например заметку Даже серебро можно сделать прозрачным), для микроволн — специальная узкая секция в волноводе. Несмотря на это волна может протиснуться через эту область на небольшое конечное расстояние, и значит, может проникнуть (туннелировать) из первого во второй «проводник волн».

Вопрос, который мучает физиков уже свыше полувека, заключается в следующем: каково время туннелирования? Этот безобидно выглядящий вопрос стал предметом долгих споров, поскольку ряд вычислений привел к странному выводу: это время может быть меньше, чем время, за которое свет пересек бы эту область. В вольной интерпретации это значит, что при туннелировании происходит сверхсветовое движение, со всеми вытекающими отсюда последствиями.

Вся загвоздка состоит в том, что именно считать временем туннелирования. Если бы речь шла о движении точечной частицы, то все было бы предельно ясно. Но речь идет о движении волны, которая как-то распределена в пространстве и может менять свою форму. Что в этом случае считать «начальным» и «конечным» временем? На скорость чего в этом случае надо смотреть?

Тут есть несколько вариантов. Можно смотреть на гребни волны — тогда получится фазовая скорость. Это наименее физически осмысленное понятие — давно известно, что с ней не связан никакой перенос энергии или информации, и в некоторых случаях (например, в тех же волноводах) она безболезненно превышает скорость света.

Можно вместо этого приготовить волновой пакет (сгусток волн, как на рисунке) и смотреть на движение его максимума. С этим движением связана групповая скорость волны. В обычных средах это «хорошее» понятие, поскольку с групповой скоростью ассоциируется перемещение энергии волнового пакета.

Однако есть экзотические случаи, например, прохождение через специально приготовленные активные области, в которых скорость движения максимума может превышать скорость света (см. подробное объяснение). На самом деле в этих случаях максимум вовсе не движется со сверхсветовой скоростью. Просто получается так, что импульс сам «вырастает» на выходе из области, будучи «инициированным» передним фронтом сигнала. Энергия при этом не переносится со сверхсветовой скоростью — она была запасена в активной среде и лишь высвобождается на выходе по сигналу переднего фронта падающего импульса.

Наконец, есть и еще время распространения информации, которое расшифровывается буквально — если мы в какой-то пролетающий мимо импульс закодируем бит информации, то спустя какое время детектор его сможет уловить. Это время распространения резких привнесенных искажений в импульс, в противоположность регулярному периодическому процессу, с которым ассоциируется, например, фазовая скорость.

Специально поставленные эксперименты (см. ссылку на Nature выше) показали, что даже импульсы со сверхсветовыми максимумами переносят информацию медленнее скорости света. Таким образом, те сверхсветовые скорости, которые получались при описанных выше определениях времени, не имеют прямого физического смысла, по крайней мере в отношении теории относительности. Реальная скорость передачи информации (что подразумевает гораздо более тонкий эксперимент, чем проделан Нимцем) во всех, даже самых экзотических случаях получалась меньше скорости света.

Итак, по сути Нимц не признает того, что скорость передачи информации в особых ситуациях может сильно отличаться от групповой скорости волны. Он считает, что они всегда совпадают, — хотя есть прямые опыты, демонстрирующие различие. Именно в этом он расходится с остальными.

Несмотря на то что уже показано, что теория относительности тут не нарушается, исследования этого вопроса продолжаются. Было введено еще несколько определений времени, и сейчас до конца непонятно, что именно описывает каждое из них. Особенно интересной ситуация становится в квантовй механике, где начинают работать особенности, связанные с детектированием квантовых частиц.

Гюнтер Нимц считает, что простой эксперимент с нарушенным полным внутренним отражением опровергает теорию относительности (адаптированное изображение из обсуждаемой статьи)


Иллюстрация волнового пакета — в обычных средах именно с движением максимума волнового пакета связано перемещение энергии
http://elementy.ru

Agent 007 05.09.2007 16:10

В солнечной короне наконец обнаружены альфвеновские волны
 
Вложений: 1
Цитата:

Американские астрофизики нащупали путь к объяснению чрезвычайно высокой температуры солнечной короны. Уже давно предполагалось, что приток энергии обеспечивают какие-то нетепловые процессы, в которых участвуют электромагнитные поля, возникающие в солнечной плазме. И вот предсказанные Альфвеном еще в 1942 году поперечные плазменные волны наконец зарегистрированы. Правда, пока еще не ясно, не окажется ли этот путь тупиковым.

Давно известно, что тайна сия велика есть. Температура поверхности Солнца, фотосферы, не превышает 5800 кельвинов. А вот внешняя часть атмосферы нашего светила, солнечная корона, куда горячее. Она состоит из разреженной плазмы, которая по плотности уступает фотосфере примерно в триллион раз, но зато в среднем нагрета до 1,8 миллиона кельвинов. Более того, отдельные участки короны могут на время разогреваться в несколько раз сильнее. Корональное свечение обладает уникальными спектральными характеристиками, которые когда-то приписывали гипотетическому химическому элементу — коронию. Сейчас известно, что структура коронального спектра объясняется наличием сильно ионизированных ионов железа.

Чтобы температура корональной плазмы достигала столь исполинских значений, в корону должна непрерывно закачиваться энергия из фотосферы. Требуемая мощность давно просчитана — примерно 1 киловатт на квадратный метр солнечной поверхности.

Встает естественный вопрос: как эта энергия передается? Очевидно, что прямой нагрев короны сравнительно холодной фотосферой невозможен, это было бы прямым нарушением второго закона термодинамики. Это означает, что приток энергии обеспечивают какие-то нетепловые процессы, в которых участвуют электромагнитные поля, возникающие в плазме. Для их теоретического описания одной термодинамикой не обойдешься, надо привлекать уравнения магнитной гидродинамики.

Поскольку проблема стара, то и решений для нее придумано много. Обо всех моделях коронального нагрева здесь не расскажешь. В целом они распадаются на два класса. В одном варианте энергия уносится от фотосферы теми или иными плазменными волнами, во втором корону нагревают индукционные токи, которые в ней возбуждает солнечное магнитное поле.

В плазме может распространяться немало различных волн. Одни из них не требуют наличия магнитного поля, другие возбуждаются лишь в его присутствии. Специалисты по физике Солнца связывают нагрев короны лишь с волнами второго типа, поскольку именно они могут эффективно канализировать энергию. Наилучшим кандидатом считаются поперечные плазменные волны, которые в 1942 году теоретически предсказал шведский астрофизик Ханнес Альфвен (Альвен). Они распространяются в плазме вдоль силовых линий магнитного поля и переносят энергию с очень малыми потерями. Альфвен в 1947 году первым предположил, что эти волны зарождаются в солнечной фотосфере и идут оттуда в корону, вливая в нее энергию. Правда, волны Альфвена (Alfvén wave) в первом приближении не диссипируют и потому сами по себе не могут нагреть корональную плазму. Однако можно допустить, что они возбуждают в ней другие волны, которые на это уже способны.

Эта концепция теоретически очень убедительна, но до сих пор ее никак не удавалось подтвердить на опыте. Альфвеновские волны действительно наблюдались и в земных лабораториях, и в плазме солнечного ветра, однако их многолетние поиски в самой короне до сих пор ни к чему не приводили. Однако 31 августа 2007 года исследователи из США сообщили в журнале Science, что регистрация корональных волн Альфвена наконец-то состоялась. Эта работа выполнена под руководством сотрудников Национального центра атмосферных исследований в Боулдере (штат Колорадо, США) Стива Томчика (Steve Tomczyk) и Скотта Макинтоша (Scott McIntosh).

Альфвеновские волны обнаружить очень непросто. Дело в том, что они не вызывают сильных смещений плотности, так что их, в отличие от других плазменных колебаний, не удается выявить по изменениям оптической яркости короны. Стив Томчик и его коллеги использовали очень чувствительный прибор — многоканальный корональный поляриметр, который был недавно установлен на телескопе Национальной солнечной обсерватории, расположенном на пике Сакраменто в штате Нью-Мексико. С его помощью они смогли измерить допплеровские сдвиги спектральных линий корональных ионов железа, которые, по мнению ученых, как раз и были вызваны прохождением альфвеновских волн. Выявленные изменения скорости оказались весьма невелики, не более 300 метров в секунду, но их всё же удалось зарегистрировать (см. видео).

Собранные данные позволяют утверждать, что новооткрытые волны действительно движутся вдоль магнитного поля, причем их скорость достигает 4000 километров в секунду. Как и ожидалось, их частота совпадает с частотой мощных фотосферных плазменных течений, которые вынуждают магнитные силовые линии вибрировать наподобие натянутых струн. Такие вибрации уходят в корону в виде альфвеновских волн. В общем, как и предсказывали теоретики, корона вроде бы действительно греется за счет энергии конвективных течений фотосферной плазмы, которая передается вверх от Солнца с помощью волн Альфвена.

Однако загадка корональной температуры всё еще не имеет окончательного ответа. Отловленные альфвеновские волны слишком слабы, чтобы обеспечить нагрев короны до нужных температур. Причем отличие зарегистрированных амплитуд от требуемых очень велико, целых четыре порядка. Тем не менее Томчик и Макинтош полагают, что эта проблема разрешима. По их мнению, в короне, скорее всего, распространяются и альфвеновские волны с куда большими амплитудами, которые пока не удалось обнаружить из-за недостаточной разрешающей способности поляриметра. Если это и в самом деле так, со временем эти волны непременно будут зарегистрированы.

Астрофизики давно пытались объяснить, почему солнечная корона настолько горячее поверхности Солнца, но только теперь можно сказать, что их предположения, хотя бы отчасти, подтвердились. (На фото с сайта en.wikipedia.org: солнечное затмение 11 августа 1999 года, вид с территории Франции.)

http://elementy.ru

LiO 06.09.2007 14:21

Наномагнитная губка очистит старинные фрески

Цитата:

Доктор Пьеро Бальони (Piero Baglioni) с коллегами из Флорентийского университета поместили наночастицы из кобальта и окиси железа в специальный гель. В результате получилась магнитная губка с порами диаметром всего 50 нм. Эти поры исследователи заполнили микроэмульсиями – смесями с молекулами сурфактанта (поверхностно-активного вещества, подобного мылу), чтобы отслаивать грязь с поверхности очищаемого объекта.

Способ очистки довольно прост: исследователи покрывают поверхность несколькими миллиметрами геля и выдерживают от 10 минут до 1 часа, в зависимости от степени загрязнения. Затем образовавшуюся пленку удаляют обычным стержневым магнитом. Гель можно высушить и использовать многократно.

Хотя системы на основе геля широко используются для очистки старинных произведений искусства, зачастую они приносят больше вреда, чем пользы. Это происходит по причине их липкости – такие гели трудно удалить с поверхности без помощи агрессивных растворителей, повреждающих живописный слой.

Пьеро Бальони отмечает: «Преимущество новой техники состоит в том, что наш гель не липкий, и никаких механических повреждений при его снятии не происходит. Новый способ очистки особенно подходит для драгоценных экспонатов». Другое преимущество нового геля состоит в том, что для наполнения магнитной губки можно использовать различные эмульсионные сурфактанты, в зависимости от свойств поверхности.

Бальони занимается проблемой очистки художественных раритетов от наслоений более 20 лет, и его методы сейчас используют во всем мире. Вместе с коллегами он помог восстановить картины эпохи Возрождения в соборах Сиены и Флоренции. Все испытания нового метода на старинных фресках были успешными, сообщает New Scientist.
Источник: CNews

LiO 10.09.2007 22:37

Вложений: 1
Разработан новый метод нанолитографии

Вложение 25887
Сокращенное название Технологического института Джорджии, записанное методом термохимической нанолитографии.

Цитата:

Новый метод нанолитографии, разработанный исследователями из Технологического института Джорджии (Georgia Institute of Technology) США, может сделать производство наноустройств коммерчески выгодным, сообщается в пресс-релизе института.

Нанолитографией в широком смысле слова называют создание любых структур, имеющих размеры порядка нескольких нанометров. Наноустройства могут применяться в медицине (для доставки лекарств в нужную точку организма), в информационных технологиях (для создания сверхмалых процессоров) и других областях.

Новый метод, называемый термохимической нанолитографией (ТХНЛ), заключается в следующем. Нагретая кремниевая игла атомно-силового микроскопа движется по специальной тонкой полимерной пленке. Под воздействием тепла на поверхности пленки начинается химическая реакция, в ходе которой соответствуюшие участки пленки изменяют свои химические свойства и приобретают способность присоединяться к другим молекулам.

Основной идеей ТХНЛ являются химические особенности пленки и использование горячей иглы (температура острия может превышать тысячу градусов Цельсия, иглу можно нагревать и охлаждать около миллиона раз в секунду). За счет того, что реакция на пленке запускается сама, удается избежать необходимости переносить вещества с иглы на пленку, как это делается в большинстве других методов.

ТХНЛ позволяет работать на скорости несколько миллиметров в секунду, в то время как другие современные методы - лишь на скорости около одной десятитысячной миллиметра в секунду. Кроме того, ТХНЛ может применяться на воздухе, во влажной среде, без присутствия сильного электрического поля, как другие методы. Минимальные размеры, с которыми можно работать, используя ТХНЛ, - около 12 нанометров.
http://www.lenta.ru/news/2007/09/10/nano/

LiO 11.09.2007 15:24

Вложений: 1
Для астрономов, нанотехнологов и неврологов учрежден аналог Нобелевской премии

Вложение 25931
Слева направо: Ян Фритьоф Бернт, президент Норвежской академии наук, Кристин Клемет, министр образования и науки Норвегии, и Фред Кавли подписывают соглашение об учреждении премии Кавли.

Цитата:

Фонд Фреда Кавли (Fred Kavli) в сотрудничестве с Норвежской академией наук учредил три новые научные премии. Каждые два года за достижения в области астрономии, нанотехнологий и неврологии будет присуждаться по миллиону долларов, сообщает BBC News.

Ученый и филантроп Фред Кавли родился в Норвегии, впоследствии эмигрировал в США и основал там корпорацию, поставляющую датчики для авиационной и автомобильной индустрии. Кавли считает, что его премия не будет конкурировать с Нобелевской, а скорее послужит дополнением к ней, охватывая те области, в которых Нобелевская премия не присуждается.

"Я решил поддержать три области науки: одна занимается самым большим, другая - самым маленьким, третья - самым сложным", - говорит Фред Кавли.

Выдвигать кандидатов на получение премии имеют право директора и профессора исследовательских институтов. Самовыдвижение запрещено. Заявки должны быть поданы до 15 декабря 2007 года. Для каждой области будет создана отдельная комиссия из ведущих исследователей, которая выберет наиболее достойного премии ученого (или коллектив). Первые лауреаты будут объявлены в июне 2008 года.

10 сентября на фестивале науки в Йорке учредители (Фонд Кавли, Норвежская академия наук и министерство образования и науки Норвегии) официально объявили о создании премии и призвали научные организации выдвигать кандидатов.
http://www.lenta.ru/news/2007/09/11/prize/

Agent 007 20.09.2007 20:30

Анализ данных коллайдера LHC может оказаться более сложным, чем ожидалось
 
Цитата:

Физики рассчитывают открыть на коллайдере LHC много новых частиц и с их помощью глубже изучить микромир. Новое исследование показывает, что выяснение свойств этих частиц может оказаться гораздо более трудоемким делом, чем считалось до сих пор.

Среди известных на сегодня сотен элементарных частиц лишь несколько (протон, электрон, три сорта нейтрино, фотон) являются стабильными. Все остальные частицы короткоживущие: они рождаются в высокоэнергетических столкновениях, существуют в течение небольшого времени, а затем распадаются (иногда в несколько этапов) на стабильные частицы.

Когда физики рассчитывают процессы рождения и распада нестабильных частиц, то они обычно используют упрощенный подход. Вначале они вычисляют вероятность рождения частицы так, словно та абсолютно стабильна, и лишь затем, отдельно, вычисляют вероятность ее распада в тот или иной конечный набор стабильных частиц. Иными словами, обычно рождение частицы и ее распад рассчитываются независимо.

Такой подход, с одной стороны, резко упрощает вычисления и позволяет изучить довольно сложные процессы, а с другой стороны, является очень точным приближением в тех случаях, когда типичное время жизни частицы намного превышает время реакции, в которой она рождается. Почти все частицы, исследовавшиеся до сих пор, этим свойством обладали; случаи же, когда рождение и распад частицы перестают быть независимыми, оставались редкими исключениями.

Похоже, однако, что такому положению дел приходит конец. В статье американских и немецких физиков, вышедшей на днях в журнале Physical Review Letters, утверждается, что для процессов рождения и распада новых частиц на коллайдере LHC такой упрощенный подход окажется неприменимым. В результате сложность теоретических расчетов многократно возрастет.

Физики ожидают, что на Большом адронном коллайдере (LHC), вступающем в строй в следующем году, будут в изобилии рождаться и быстро распадаться новые тяжелые частицы. Сравнивая результаты эксперимента с вычислениями теоретиков, физики смогут определить свойства этих частиц и благодаря им — восстановить новые, неведомые ранее аспекты устройства нашего мира. А для этого нужно будет с высокой точностью вычислить вероятности как рождения, так и того или иного канала распада всех тяжелых частиц, которые будут открыты на LHC.

Однако вычисления, проделанные авторами статьи, показывают, что во многих случаях картина распада этих частиц будет зависеть от того, как именно они родились. В этих условиях обычный упрощенный подход может дать сбой и привести к большой ошибке в расчетах. Самое важное, что эти сбои будут наблюдаться не в отдельных случаях, а регулярно. Вычисления показывают, что особенно сильно приближенный подход будет нарушаться в том случае, если окажется, что несколько новых частиц имеют близкие значения масс — а некоторые теории как раз предсказывают такую ситуацию.

Этот вывод означает, что для правильной «расшифровки» будущих результатов LHC потребуется систематически придерживаться более точного, но и гораздо более трудоемкого способа расчетов. Смогут ли физики-теоретики справиться с этой задачей — покажет время. Впрочем, они уже давно отдают себе отчет в том, что вычисления для LHC будут сложными, и даже организуют большие коллаборации в преддверие запуска коллайдера.
http://elementy.ru

LiO 20.09.2007 22:35

Вложений: 1
Присуждена главная научная награда Франции

Вложение 26813

Цитата:

Французский Национальный центр научных исследований (Centre national de la recherche scientifique, CNRS) объявил лауреата главной научной награды Франции за 2007 год. Золотая медаль CNRS присуждена известному экономисту Жану Тиролю (Jean Tirole).

Тироля наградили за труды по теории игр и теории информации, разработку особой теории - "новой индустриальной экономики", развитие экономических наук во Франции вообще и в Тулузе в частности, активное участие в общественных дискуссиях и политико-экономической жизни страны. Тироль довольно широко известен во всем мире, некоторые его книги переведены на русский.

10 сентября фонд Thomson Scientific, владеющий крупнейшей базой данных о научных публикациях, назвал Тироля одним из основных претендентов на Нобелевскую премию по экономике. Thomson Scientific ежегодно делает подобные прогнозы, за несколько недель до вручения премии публикуя список ученых, которые, по мнению экспертов фонда, с наибольшей вероятностью получат Нобелевскую премию в ближайшие годы.
http://www.lenta.ru/news/2007/09/20/cnrs/

Ferrari 24.09.2007 14:37

Вложений: 1
Ученые предлагают изменить определение килограмма

Цитата:

Исследователи из Технологического института Джорджии (Georgia Institute of Technology), США, предлагают определить килограмм как массу фиксированного числа атомов углерода-12 и отказаться от старого его определения как массы хранящегося во Франции эталона, сообщается в пресс-релизе института.

В настоящее время килограмм определяется как масса международного эталона, хранящегося в Международном комитете мер и весов во Франции. Эталон представляет собой платино-иридиевый цилиндр, изготовленный в 1889 году. С него сняты копии, использующиеся как национальные эталоны.

Несмотря на специальные условия хранения, эталон постоянно претерпевает изменения массы, считающиеся незначительными. Недавние проверки, однако, показали, что в последнее время потеря массы не так уж незначительна: 50 микрограмм (ранее предполагалось, что за сто лет эталон теряет примерно три сотых микрограмма). Это может вызвать сильные расхождения с национальными эталонами. Кроме того, по определению, любое изменение массы эталона изменяет само понятие "килограмм", что неудобно.

Физик Рональд Фокс (Ronald Fox) и математик Теодор Хилл (Theodore Hill) предлагают определить килограмм как ровно 18x140744813 (50184508190229061679538) атомов углерода-12. По мнению исследователей, такое определение будет гораздо точнее и удобнее старого. Оно не привязано ни к какому конкретному физическому объекту, но при желании всегда можно изготовить углеродный эталон (разумеется, с ограниченной точностью).

Изначально Фокс и Хилл занимались уточнением числа Авогадро, важнейшей химической и физической константы, количества молекул (атомов) в моле, единице количества вещества. Число Авогадро подобрано так, чтобы масса моля в граммах равнялась массе молекулы (атома) в атомных единицах массы. Так, атом углерода, на котором Фокс и Хилл проводили свои измерения, имеет массу 12 атомных единиц массы, значит, моль углерода должен весить 12 граммов. Уточнив число Авогадро и объявив его равным 844468863 (602214098282748740154456), ученые узнали про проблемы с эталоном и предложили свое решение. Фокс и Хилл считают, что определять одну из основных единиц измерения через эталон - устаревшая методика, и надеются привлечь к своему предложению внимание научного сообщества.

В настоящее время независимо готовится несколько других проектов изменения определения килограмма.
http://www.lenta.ru/

Agent 007 02.10.2007 17:38

Хаотична ли Солнечная система?

Цитата:

Проявляется ли хаос в движении внешних планет-гигантов в Солнечной системе? Долгое время два разных метода расчета давали противоположные ответы. Американский исследователь, по-видимому, разрешил этот парадокс.

Точность, с которой астрономы могут предсказывать солнечные затмения и движение планет, наводит на мысль, что динамика крупных тел в Солнечной системе абсолютно предсказуема. На самом деле это впечатление обманчиво. Регулярным движение планет кажется лишь в тысячелетнем масштабе, но, когда счет идет на миллионы лет, в их динамику вполне может вмешаться хаос.

В случае движения планет Солнечной системы хаос, к счастью, не означает, что планеты будут двигаться совсем уж беспорядочно. Их орбиты будут лежать примерно в том же районе, где и сейчас. Хаотическое движение планеты на масштабе времени T означает только, что вы не сможете вычислить хотя бы приблизительное положение планеты на орбите через промежуток времени, в несколько раз больший, чем T.

Является ли движение планет в Солнечной системе регулярным и хаотическим, выясняется с помощью численных расчетов. Прибегать к ним приходится потому, что в случае более чем двух гравитационно взаимодействующих тел не существует аналитической формулы, в которую можно было бы подставить время и сразу получить положение тел в любой момент времени (см., например, популярную статью Задача трех тел и ее точные решения).

Гравитационные силы, притягивающие планеты к Солнцу и друг к другу, известны, поэтому можно задать начальные положения и скорости планет и запустить моделирование их движения в течение какого-то промежутка времени. Параллельно с этим запускается второе моделирование, в котором всё то же самое, только начальные данные отличаются на незначительную величину, например всего на 1 миллиметр. Вначале орбиты планет в этих двух ситуациях будут с огромной точностью совпадать, но постепенно, с ходом времени, они начнут всё сильнее и сильнее различаться. Для регулярного (нехаотического) движения это различие будет оставаться небольшим, в то время как для хаотического движения — экспоненциально увеличиваться со временем.

Вычисления такого рода для разных планет Солнечной системы уже давно были проделаны несколькими группами. Они, в частности, доказали, что движение Плутона становится хаотичным на временах порядка 10-20 миллионов лет из-за специфического резонансного взаимодействия с другими планетами. Динамика внутренней Солнечной системы, которая включает первые четыре планеты от Солнца — Меркурий, Венеру, Землю и Марс, — тоже хаотична на масштабе 4-5 миллионов лет, правда в этом случае причина хаоса пока не известна.

А вот выяснение этого вопроса для планет-гигантов во внешней Солнечной системе (Юпитер, Сатурн, Уран, Нептун) неожиданно зашло в тупик. Расчеты одной группы (движение четырех больших планет в них учитывалось точно, а вращение внутренних планет Солнечной системы просто усреднялось) показали, что хаоса нет, по крайней мере в течение первого миллиарда лет. Вычисления другой группы — в них честно рассчитывалось движение всех планет — исправно «видели» хаос. Правда, при небольшой вариации параметров его временной масштаб постоянно прыгал в широком диапазоне, и причины, вызывавшие такую изменчивость, были непонятны. Одно время было ощущение, что хаос в этом случае — просто артефакт численных расчетов, но после тщательных проверок сходимости эту мысль пришлось оставить. Таким образом, к настоящему времени сложилась почти парадоксальная ситуация: имеются одинаково надежные расчеты, свидетельствующие как о том, что хаос в движении внешних планет есть, так и о том, что его нет.

Разобраться с этой ситуацией попробовал Уэйн Хэйес (Wayne Hayes) из Калифорнийского университета в Ирвайне (США). В своей статье, опубликованной недавно в журнале Nature Physics, он пришел к интересному выводу — всё дело в погрешности начальных данных.

Начальные данные для этих вычислений — положение и скорости дальних планет — берутся из астрономических наблюдений и известны сейчас с относительной погрешностью чуть лучше одной миллионной. Это может показаться очень высокой точностью, но, как выяснил автор, даже в этих пределах встречаются и регулярные, и хаотические ситуации, и более того — они перемешаны. Для доказательства автор взял 31 набор параметров орбит, все из которых лежат в пределах наблюдательных погрешностей. В пределах интервала моделирования в 200 миллионов лет 21 из них оказались хаотическими, а 10 — регулярными.

Иными словами, если взять наугад какие-нибудь начальные данные в этих пределах, то они могут с какой-то вероятностью получиться регулярными, а с какой-то — хаотическими. Именно в этом кроется, по мнению автора, расхождение между расчетами разных групп. А какой ситуации отвечает реальность, при сегодняшнем уровне знаний сказать нельзя.

На самом деле, эта работа не только предлагает ответ на давнюю загадку, но и ставит перед физиками новые вопросы. Совершенно непонятно, откуда возникает такая тонкая структура в хаосе — то есть такое тщательное перемешивание регулярных и хаотических ситуаций. Никакие известные резонансные явления в динамике внешних четырех планет объяснить это пока не могут. Не исключено, что в конце концов окажется, что резонансный механизм порождения хаоса вообще не сможет описать эти результаты, и тогда динамика Солнечной системы поставит перед теорией динамических систем уже вопросы не прикладного, а фундаментального характера.
http://elementy.ru

sANy0 04.10.2007 21:07

Затерянный мир в капле янтаря

Цитата:

Целый затерянный мир нашли итальянские ученые в каплях янтаря. Возраст этому уникальному янтарю Триасового Периода ни много, ни мало 220 миллионов лет - даже древнее динозавров.

Крупнейшее месторождение янтаря Триасового периода было найдено недалеко от итальянского города Кортина Д Ампреззо, в Южных Альпах, -- несколько тысяч довольно крупных (порядка миллиметров размером) каплеобразных кусочков. Этот янтарь скрупулезно изучили итальянские ученые Евгенио Рогацци, Олимпия Копелотти из Университета Падуи, Гидо Роги из Института Геологических наук и земных ресурсов, Падуя, и их немецкий коллега Александр Шмидт из Музея Естественных Наук при Университете Гумбольдта, Берлин.

Издавна известно, что янтарь очень хорошо предохраняет живые организмы от разложения, как бы консервирует их. Ученые обнаружили в триасском янтаре огромное колическтво законсервированных древних организмов. Большую часть из них составляли древние бактерии. Кроме того, они нашли довольно много водорослей - близкие по строение к современному роду Cosmarium, причем на разных стадиях репродуктивного процесса. Обнаружили и древние грибы - по строению очень близкие к представиелям рода Ramularia.

Кроме того, ученые обнаружили в янтаре древнейших животных - жгутиковых из рода Coleps, амеб из семейств Centropyxidae и Diflugiidae. Внимательно проанализировав амеб разных видов, ученые натолкнулись на удивительный факт - оказывется, 220 миллионов лет наза уже существовал вид Centopyxis hirsuta Deflandre, и это вид простейших животных жив до сих пор.
tr-amber.jpg
Рис.1. Капли янтаря с микровключениями.


Интересен не только анатомический, но и экологический аспект находки - в янтаре представлены представители всех трофических уровней древнейшего микро-биогеоценоза - продуценты (бактерии и фототрофические водоросли), консументы (простейшие животные) и редуценты (грибы). Амебы ели бактерий, жгутиковые простейшие - скорее всего, водорослей. Некоторые крупные жугитовые ели других жгутиковых помельче, ризопод, а может, и древних многоклеточных животных.

Скорее всего, считают ученые, в определенных местах дна скапливались организмы, оседавшие со всей толщи воды. Видимо, капли смолы "удачно" упали в места скопления такого рода осевших организмов.

Открытие итальянских ученых позволяет нам представить во всей красе и многообразии устройство древних микро-биогеоценозов. Кроме этого, ученые доказали, что некоторые семейства, роды и даже виды древних организмов живут на Земле вот уже 220 миллионов лет.


Добавлено через 4 минуты


Полные митохондриальные геномы вымерших животных теперь можно извлекать из волос

Цитата:

Знаменитый мамонтенок Дима — один из десяти мамонтов, чей митохондриальный геном удалось «собрать» из кусочков ДНК, сохранившихся в стержнях волос. Фото с сайта www.paleo.ru
Знаменитый мамонтенок Дима — один из десяти мамонтов, чей митохондриальный геном удалось «собрать» из кусочков ДНК, сохранившихся в стержнях волос. Фото с сайта www.paleo.ru

Новые методы секвенирования («прочтения») ДНК позволили международной группе исследователей восстановить полные митохондриальные геномы 10 мамонтов на основе фрагментов ДНК, выделенных из стержней волос. Исследование показало, что митохондриальная ДНК сохраняется в древних волосах даже лучше, чем в костях. Это открывает новые возможности для молекулярно-генетического изучения вымерших млекопитающих.

Несмотря на большой интерес к изучению древней ДНК, до сих пор ученым удалось прочесть только шесть полных митохондриальных геномов ископаемых животных — 4 генома гигантских нелетающих птиц и 2 генома мамонтов (см. Полностью расшифрован митохондриальный геном мамонта, «Элементы», 07.02.2006). В большинстве случаев дело ограничивается короткими фрагментами ДНК, которые извлекают из костей или из сохранившихся в вечной мерзлоте мягких тканей.

ДНК современных людей и зверей для генетических анализов часто берут из корней волос, где много живых клеток с высоким содержанием ДНК. Что касается стержней волос, то они традиционно считались малоперспективным источником ДНК. Стержни волос состоят из мертвых кератинизированных (ороговевших) клеток с незначительным содержанием генетического материала. Старые методы выделения, амплификации (размножения) и секвенирования (определения последовательности нуклеотидов) не позволяли работать с такими ничтожными количествами ДНК.

Однако стремительное развитие технологий сегодня сделало возможным то, что казалось немыслимым еще 3 года назад. Большая международная группа ученых (в состав которой входят 6 российских исследователей) сообщила об успешном прочтении десяти полных митохондриальных геномов на основе фрагментов ДНК, извлеченных из шерсти сибирских мамонтов. Это стало возможным благодаря новой технологии секвенирования, получившей название «sequencing-by-synthesis» (секвенирование при помощи синтеза). Статья с описанием этой методики была опубликована в журнале Nature в сентябре 2005 года.

Авторы использовали разное количество волос для каждого из 10 мамонтов — сколько смогли раздобыть (от 0,2 г до 5,2 г). Использовались только стержни; если где-то сохранились корни волос, они удалялись. Во всех 10 случаях извлеченного количества митохондриальной ДНК вполне хватило для полной и достаточно точной реконструкции митохондриального генома. Средняя длина фрагментов мтДНК, сохранившихся в волосах, колеблется от 60 до 128 пар оснований (примерно как и в костях).

Авторы отмечают, что волосы во многих отношениях оказались лучшим материалом для исследования древней митохондриальной ДНК, чем кости.

Во-первых, как выяснилось, ДНК в стержнях волос медленнее подвергается «посмертному мутированию». По-видимому, мертвые кератинизированные клетки защищают сохранившуюся в толще волоса ДНК от разнообразных повреждающих воздействий, в том числе от воды, которая способствует превращению (гидролизу) цитозинов (Ц) в тимины (Т).

Во-вторых, в стержнях волос оказалась резко повышена доля мтДНК по отношению к ядерной ДНК, что сильно облегчает работу по прочтению именно митохондриальных геномов.

В-третьих, мтДНК из стержней волос оказалась несравненно меньше загрязнена чужеродным генетическим материалом — бактериальным, человеческим и т. д. (а эти загрязнения — главная головная боль всех специалистов по изучению древней ДНК).

Наконец, в-четвертых, волосы обычно представляют меньшую ценность, чем кости, и их не так жалко тратить на генетические анализы.

Изученные волосы пролежали в вечной мерзлоте от 17 до 50 тысяч лет, но это не так страшно для сохранности ДНК, как те годы, которые эти волосы провели потом в музеях при комнатной температуре. Один из самых удивительных результатов данного исследования состоит в том, что мтДНК сохранилась даже в волосах знаменитого «мамонта Адамса» — первого мамонта, исследованного учеными. Этот прекрасно сохранившийся мамонт был найден в 1799 году охотником-эвенком. В 1806 году мамонт был извлечен из вечной мерзлоты русским ботаником Михаилом Адамсом. Изучение этого мамонта дало первые бесспорные доказательства того, что биологические виды могут вымирать. Скелет мамонта Адамса сегодня хранится в Санкт-Петербургском зоологическом музее.

То, что в шерсти мамонта Адамса после 200 лет хранения при комнатной температуре все-таки сохранилась мтДНК в количестве, достаточном для реконструкции полного митохондриального генома, открывает перед исследователями небывалые перспективы. Авторы отмечают, что теперь появилась реальная возможность применить всю мощь методов генетического анализа к коллекциям Чарльза Дарвина, Александра Гумбольдта и Карла Линнея. Можно надеяться, что вскоре удастся прочесть митохондриальные геномы многих недавно вымерших животных, чучела которых сохранились в музеях.

iva 04.10.2007 21:10

sANy0, желательно указывать источник сообщений и оставлять ссылку. :)

LiO 24.10.2007 22:01

Вложений: 1
Британский студент получит 25 тысяч долларов за математическое доказательство



Вложение 30646
"Вольфрамовская" машина Тьюринга в виде конечного автомата: первые двести переходов. Направление "капельки" (вверх/вниз) символизирует состояние каретки, цвет квадратика (белый, желтый, оранжевый) - символ алфавита.

Цитата:

Двадцатилетний британский студент Алекс Смит (Alex Smith) решил задачу, предложенную в мае 2007 года известным американским математиком Стивеном Вольфрамом (Stephen Wolfram), и теперь получит учрежденный Вольфрамом приз в 25 тысяч долларов, сообщает журнал Nature.

Вольфрам родился в Лондоне, но впоследствии переехал в Америку и основал там компанию Wolfram Research. Известен, в частности, как создатель распространенной компьютерной программы Mathematica. В мае этого года Вольфрам предложил всем желающим доказать, что конкретная машина Тьюринга с двумя состояними каретки и алфавитом из трех символов является универсальной (или доказать обратное).

Машиной Тьюринга в честь британского математика Алана Тьюринга (Alan Turing) называют абстрактный исполнитель алгоритмов, упрощенную модель вычислительной машины. В состав машины Тьюринга входит бесконечная в обе стороны лента, разделённая на ячейки, в каждой ячейке может быть записан один из символов заданного алфавита. Над лентой передвигается каретка, которая может находиться в одном из заданных состояний.

Каретка может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита. Правила перемещения (вида "прочти символ", "перейди на такую-то клетку", "запиши символ", "сотри символ") задаются программой, которая тоже является частью конкретной машины Тьюринга. Мысленный эксперимент с машиной Тьюринга редко непосредственно используется в современной математике, но в принципе на ней можно промоделировать многие, в том числе и довольно сложные, алгоритмы.

Универсальной называют машину Тьюринга, которая способна заменить собой любую другую машину Тьюринга. Задача, предложенная Вольфрамом, состояла в том, чтобы выяснить, является ли машина Тьюринга с двумя состояними каретки, алфавитом из трех символов (считая пустой) и конкретным набором правил (позволяющим при простых начальных условиях заполнять ленту весьма сложными узорами символов) универсальной, и доказать это.

Узнав о конкурсе, Алекс Смит, студент третьего курса Бирмингемского университета, изучающий электротехнику, сразу взялся за работу. Сведя задачу к эквивалентной, но более простой, Смит доказал универсальность "вольфрамовской" машины, за что и получит 25 тысяч долларов.
http://www.lenta.ru/news/2007/10/24/math/

CBETA 27.10.2007 05:09

Множественность Вселенных - правда или миф?



Цитата:

«За каждым поворотом улицы я встречаю другого самого себя»

Тристан Тцара

Похоже, спор между физиками, длящийся уже более полувека, подходит к своему логическому завершению. Речь – о проблеме множественности Вселенных. Известный британский физик-теоретик Дэвид Дойч из Оксфордского университета, автор нашумевшей книги «Структура реальности» (The Fabric of Reality), опубликовал вместе с коллегами статью, в которой доказывает, что без тезиса о множественности Вселенных (он называет их совокупность Мультиверс, то есть Мультивселенная) не может быть квантовой механики. А поскольку квантовой механики, этого столпа современной физики, просто не может не быть, то, следовательно, не может не быть и множественности миров.

Любители научной фантастики со множественностью Вселенных давно сроднились, для них перебраться из мира в мир – все равно что перейти улицу. Правда, первый, кто написал об этом, был О'Генри с его рассказом «Дороги, которые мы выбираем», то есть отнюдь не фантаст. А 50 лет назад на идею Мультивселенной всерьез подсели и физики. Это случилось после того, как в 1957 году никому не известный свежеиспеченный выпускник Принстонского университета Хью Эверетт опубликовал весьма странную и трудночитаемую даже для специалистов статью, совершившую, как утверждают, настоящий переворот в квантовой механике. В частности, здесь впервые была высказана идея о расщеплении миров.

Читателям, знакомым с квантовой механикой хотя бы понаслышке, должен быть известен принцип неопределенности Гейзенберга: чем точнее мы знаем месторасположение элементарной частицы, тем меньше нам известно о ее скорости – и наоборот. Электрон согласно этому принципу – уже не точка, а размытое пятнышко. Когда он вертится вокруг атомного ядра, то там нет орбиты, а есть некое сферическое облако. На самом-то деле он, может быть, и точка, но для нас он пятнышко – область его возможных местонахождений и скоростей.

По Эверетту, в момент «измерения» (этому термину ученый придает куда более широкий смысл, чем общепринятый) Вселенная расщепляется на множество других, и в тот момент отличаются они друг от друга только местонахождением точки в одном-единственном пятнышке. Причем при любом акте выбора, куда ставить точку, реально осуществляются с той или иной вероятностью ВСЕ мыслимые варианты этого выбора, и на каждый вариант полагается своя собственная Вселенная.

Иными словами – каждый миг каждая Вселенная в мире Эверетта расщепляется на непредставимое количество себе подобных, а уже в следующий миг каждая из этих новорожденных расщепляется точно таким же образом. И есть огромное, чуть ли не близкое к бесконечности и все время увеличивающееся множество Вселенных, и в этом множестве есть множество миров, в которых существуете вы. В одном мире вы, читая эту статью, пьете чай, в другом – кофе. В одном мире вы едете в переполненной электричке, в другом – на собственной океанской яхте. В одном мире вы победитель, в другом – побежденный. И в этом множестве есть множество таких миров, где все вы практически не отличаетесь друг от друга.

Осталось только понять, имеем ли мы, по теории Эверетта, хотя бы принципиальную возможность пересечь тот самый поворот улицы, за которым можно встретить другого самого себя.
Параллельные миры: веришь – не веришь?

Физики же в отношении идеи множественности миров немедленно разделились на два лагеря – на тех, кто верит в нее, и на тех, кто не верит. Не было аргументов, опровергающих идею Хью Эверетта, но не было и таких, которые могли бы ее подтвердить. Доходило до абсурда – среди крупных теоретиков провели социологический опрос: множественна Вселенная или нет? 58% сказали «да», 38% отвергли эту идею.

Полную версию статьи читайте здесь:
http://www.ng.ru/science/2007-10-24/11_physics.html

LiO 27.10.2007 23:15

"Бомбардировка" ядра привела к синтезу новых изотопов
Границы стабильности вещества могут сдвинуться дальше, чем считалось ранее

Цитата:

Американским физикам удалось синтезировать три новых сверхтяжелых изотопа. По информации Национальной лаборатории сверхпроводящего циклотрона (NSCL) США, циклический ускоритель частиц, который при "бомбардировке" ядра с большой скоростью, привел к распаду ядра и созданию трех новых изотопов.

Многие изотопы не встречаются в природе и могут быть синтезированы лишь искусственным путем, особенно сверхтяжелые нестабильные ядра. Физики из NSCL бомбардировали лист вольфрама высокоскоростными ядрами кальция-48. Возникающие после бомбардировки ядра подвергались высокоточному анализу, который позволяет обнаружить даже самые редкие изотопы.

В частности, магний-40 (12 протонов, 28 нейтронов), алюминий-43 (13 протонов, 30 нейтронов) и алюминий-42 (13 протонов, 29 нейтронов) заставляют пересмотреть гипотезы о максимальном количестве нейтронов, которое может содержать атомное ядро.

Следует отметить, что ученые ранее считали существование алюминия-42 невозможным. Однако детекторам удалось зафиксировать более 20 ядер странного изотопа, практически не оставляя сомнений в его существовании.

Несмотря на подобного рода успех, ученые уверены, что после усовершенствования методов проведения эксперимента, им удастся получить еще более тяжелые изотопы.

Тем временем, пограничной полицией Грузии были задержаны четверо граждан Армении, пытавшихся ввезти в Турцию более 2 грамм радиактивного материала. Согласно данным грузинских пограничников, речь идет об изотопе Lovresium (LAV-103), упакованном в специальным контейнер. Ведется расследование и установление целей его использования задержанными.

Пободный инцидент уже имел место на территории Грузии. Несмотря на то, что инцидент произошел в январе 2006 года, о нем стало известно лишь в этом году. В январе прошлого года спецслужбы объявили о задержании гражданина РФ, в нагрудном кармане которого был обнаружен полиэтиленовый пакет с ураном высокой степени обогащения (более 90%). Сам арест был произведен летом 2006 года.
http://www.ng.ru/science/2007-10-27/100_izotop.html

LiO 29.10.2007 23:01

Вложений: 1
Специалисты по квантовой электронике научились передавать информацию на большие расстояния

Ян Аппельбаум (справа) и Бицинь Хуан

Цитата:

Физики смогли передать спин электрона на значительное для микротехнологий расстояние. Это важный шаг в спинтронике - многообещающей области квантовой электроники, использующей в качестве основного носителя информации не заряды, а особые квантовые характеристики - спины - электронов, сообщает Делавэрский университет США.

Электрон, как и другие элементарные частицы, обладает особой характеристикой - спином. Спин электрона может принимать два значения (иметь два направления - условные "вверх" и "вниз"), которые используются в качестве логических 0 и 1. Спинтроника (спиновая электроника) использует спины в качестве основного физического носителя информации, тогда как обычная электроника полагается на заряды.

Заряд электрона неизменен, поэтому для в обычной электронике для операций необходимо перемещать электроны (убирать их или, наоборот, доставлять на нужное место), тогда как в спинтронике можно менять спины электронов, не затрачивая энергию на перенос самих частиц. Это, а также способность спинтронных элементов памяти сохранять данные даже при отключенном питании, позволяют надеяться, что в будущем спинтроника окажется более быстрым, дешевым и надежным способом обработки информации.

Бицинь Хуан (Biqin Huang), Ян Эппельбаум (Ian Applebaum) и Доу Монсма (Douwe Monsma) из Делавэрского университета (которые в мае 2007 года впервые экспериментально доказали возможность изготовления спинтронных устройств из кремния) смогли передать спин на огромное для микротехнологий расстояние: через целую кремниевую вафлю (тонкую пластинку размером несколько сантиметров). Иными словами, они добились того, чтобы поведение электронов на одном конце вафли зависело от спина нужных электронов на другом конце.

По мнению исследователей, теперь доказано, что в кремниевых спинтронных устройств возможна эффективная передача информации.

Развитие спинтроники стало возможным во многом благодаря открытию эффекта гигантского магнетосопротивления, позволяющего влиять на свойства электронов при помощи магнитного поля.
http://www.lenta.ru/news/2007/10/29/spin/

Agent 007 05.11.2007 17:25

Нанотехнологии должны приносить пользу

Цитата:

С самого начала следующего года начнет действовать новая общеевропейская программа под названием Catrene (Cluster for Application and Technology Research in Europe on NanoElectronics). Основная задача – поиск применения последним достижениям нанотехнологий в таких значимых областях, как энергетика, здравоохранение и транспорт. Бюджет Catrene составляет 6 млрд евро. Освоить эти средства предполагается за четыре года.
http://www.igromania.ru

LiO 06.11.2007 22:20

Вложений: 1
Химики промоделировали на неживых объектах уникальное свойство живых организмов


Вложение 32288
Распределение палочек на поверхности раствора: справа - через 38 часов после начала опыта, слева - через 110. Фото авторов исследования.

Цитата:

Химики из Пенсильванского государственного университета "научили" неживые объекты умению, присущему только живым организмам, - хемотаксису, способности самостоятельно двигаться по направлению к определенным химическим веществам или от них, сообщает PhysicsWorld.

Благодаря хемотаксису, например, одноклеточные организмы способны двигаться в водном растворе по направлению к тем областям раствора, где концентрация определенных веществ выше (если это аттрактанты) или ниже (если это, соответственно, репелленты).

Легко представить, что хемотаксис в неживой природе можно было бы использовать для управления движением частиц в жидкости (например, лекарств в организме), для самосборки наноустройств без затрат внешней энергии, для проверки наличия в растворах опасных или, наоборот, полезных веществ. Однако механизм, благодаря которому живым организмам присущ хемотаксис, чрезвычайно сложен, и искусственно промоделировать его трудно.

Пенсильванские химики придумали достаточно простой способ. Моделями организмов служили металлические палочки длиной два нанометра. Один конец у палочек был золотым, второй - платиновым. Палочки помещались в плоский сосуд с чистой водой, туда же помещался гель, содержащий перекись водорода. Перекись постепенно переходила из геля в воду, за счет чего возникал перепад ее концентрации в растворе: чем ближе к гелю, тем выше.

Через 110 часов после начала эксперимента 70 процентов палочек собралось вплотную к гелю. По мнению исследователей, причиной направленного перемещения палочек является случайное движение молекул в растворе с неравномерной концентрацией. И золото, и платина являются катализаторами распада перекиси водорода, но реакции протекают по-разному. В итоге вокруг палочки возникает движение молекул раствора, которое сдвигает с места и ее саму. Чем выше концентрация перекиси водорода, тем интенсивнее движение частиц. В конце концов большинство палочек оказывается в месте максимальной концентрации - притягивается к гелю.

Теперь пенсильванская группа хочет промоделировать в неживой природе фототаксис: двигательную реакцию уже не на химический, а на световой раздражитель.
http://www.lenta.ru/news/2007/11/06/chemotaxis/

Agent 007 07.11.2007 12:19

Молекулярная биология
 
Сделан еще один шаг к пониманию механизмов регенерации

Цитата:

Отрезанная конечность у тритона начинает восстанавливаться только в том случае, если в культе остался живой нерв. Механизм, посредством которого нерв «руководит» регенерацией, оставался неизвестным. Британские ученые обнаружили белок, играющий ключевую роль в этом механизме. Достаточно заставить клетки культи производить этот белок, чтобы конечность полностью восстановилась даже в отсутствие живых нервов.

Механизмы регенерации продолжают оставаться во многом загадочными, несмотря на огромный (и вполне оправданный) интерес ученых к этому явлению (см. ссылки внизу). Одной из загадок является роль нервов в процессе восстановления утраченных конечностей. Еще в 1823 году английский врач Твиди Джон Тодд (Tweedy John Todd, 1789–1840) обнаружил, что для восстановления отрезанной лапки у тритона необходимо присутствие живого нерва. Если убить нерв, идущий к конечности от спинного мозга, перерезав его у основания, то регенерация не происходит. В дальнейшем выяснилось, что для нормальной регенерации вовсе не нужно, чтобы нерв функционировал, то есть проводил нервные импульсы или выделял нейромедиаторы. Достаточно, чтобы он «просто был». Как оказалось, присутствие нерва, при выполнении некоторых условий, может стимулировать даже развитие дополнительной конечности («пятой ноги») на месте обычной ранки (см.: Endo et al., 2004. A stepwise model system for limb regeneration). В дальнейшем было показано, что нервы необходимы для многих разновидностей регенерационных процессов как у позвоночных, так и у беспозвоночных.

На месте ампутации у тритона сначала образуется так называемая бластема — «холмик» из стволовых клеток, из которого, если всё пойдет нормально, постепенно вырастет новая нога. Бластема образуется даже в отсутствие нерва, но тогда процесс регенерации на этом и останавливается. Если же в культе есть живой нерв (который тоже начинает регенерировать после ампутации), клетки бластемы активно делятся и постепенно формируют заново утраченные части ноги — начиная от проксимальных (ближайших к основанию) и кончая дистальными, то есть пальцами. Интересно, что нерв является необходимым условием только для ранних этапов регенерации (кроме самого раннего — образования бластемы); если конечность уже начала отрастать, то удаление нерва не останавливает этот процесс.

Регенерация конечности идет под управлением нескольких регуляторных белков и белковых комплексов, которые руководят также и процессом образования конечностей в онтогенезе (индивидуальном развитии). «Генетическая программа» регенерации, судя по всему, представляет собой слегка модифицированный фрагмент программы индивидуального развития, которая есть у всех животных (см.: Разгадан механизм регенерации конечностей, «Элементы», 27.11.2006).

Один из важных регуляторов развития конечности — белок Prod 1, располагающийся на поверхности клеток бластемы. Он задает проксимально-дистальный градиент, от которого зависит, какие части растущего зачатка станут плечом, какие предплечьем, а какие — кистью. Чем ближе к основанию конечности, тем выше концентрация белка Prod 1, чем дальше от основания — тем меньше молекул белка можно найти на поверхности клеток развивающегося зачатка. Экспериментально было показано, что если искусственно активизировать синтез белка Prod 1 в дистальной части зачатка, то там, где следовало бы появиться предплечью или кисти, развивается что-то плечеподобное, то есть клетки начинают вести себя так, как если бы они были расположены гораздо ближе к основанию конечности.

Британские биологи предположили, что белок Prod 1, располагающийся на поверхности клеток, играет роль рецептора, и, следовательно, должен существовать лиганд — вещество, которое связывается с этим рецептором (и таким образом клетки бластемы принимают извне некий руководящий сигнал). Этот гипотетический лиганд, очевидно, должен играть важную роль в регуляции регенерационных процессов. Оставалось его найти.

С этой целью ученые исследовали различные вещества, выделяемые клетками регенерирующей конечности, проверяя, не проявляют ли они склонности образовывать прочные комплексы с белком Prod 1. Целенаправленный поиск оказался успешным. Оказалось, что один из секретируемых (выделяемых клетками во внешнюю среду) белков, получивший название nAG, обладает искомым свойством. Этот белок относится к семейству белков AG (anterior gradient), о функциях которого известно довольно мало (в частности, известно, что некоторые AG-белки активно синтезируются в раковых опухолях у человека и грызунов).

Теперь нужно было изучить другие свойства новооткрытого белка. Добавив его в культуру стволовых клеток бластемы, ученые обнаружили, что nAG резко ускоряет их деление. Это означало, что ученые на верном пути и что белок nAG может иметь прямое отношение к регенерации.

На следующем этапе исследований обнаружилась связь белка nAG с нервами. Оказалось, что вскоре после ампутации конечности в дистальной части культи начинается активное производства белка nAG клетками, окружающими регенерирующий нерв (шванновскими клетками). Через некоторое время на поверхности бластемы образуется тонкий эпидермис с желёзками, и в этих желёзках тоже вырабатывается белок nAG.

Если же нерв был перерезан у основания (то есть убит), то после ампутации шванновские клетки не производят белка nAG, а бластема вскоре прекращает свое развитие и не образует железок.

Таким образом, стало ясно, что живой восстанавливающийся нерв необходим для того, чтобы шванновские клетки начали вырабатывать белок nAG. Теперь уже у ученых появились все основания предполагать, что белок nAG играет какую-то роль в передаче «руководящего сигнала» от нерва к клеткам бластемы (а принимается этот сигнал белком Prod 1).

Если бы опыты ставились не на тритонах, а на мышах, то в качестве следующего шага было бы естественно «выключить» ген, кодирующий белок nAG (у мышей его нет, но есть его гомологи — белки AG2 и AG3), и посмотреть, будет ли отрастать отрезанная конечность. Но у мышей конечности, как известно, не отрастают, а у тритонов исследователи пока не умеют так ловко отключать гены. Поэтому исследователи поступили иначе. Сначала они перерезали нескольким тритонам нервы, идущие к правой передней лапе. Потом ампутировали конечность. После этого половине тритонов в культю ввели активно работающий ген белка nAG при помощи метода электропорации. Второй половине тритонов, которая служила контролем, тем же способом вели неработающий фрагмент ДНК.

Результат превзошел все ожидания. У контрольных тритонов, естественно, регенерация не состоялась (поскольку нерв был убит). У основной группы животных, несмотря на отсутствие в культе живого нерва, конечность восстановилась полностью, включая даже пальцы. Синтез белка nAG в шванновских клетках так и не начался, но бластема тем не менее стала быстро делиться и образовала эпидермис с желёзками, и эти желёзки, как и положено, начали производить белок nAG. После этого восстановление конечности шло обычным путем.

Таким образом, белок nAG оказался ключевым звеном в передаче сигнала от нерва к клеткам бластемы. Стало ясно, что живой восстанавливающийся нерв нужен для того, чтобы стимулировать производство белка nAG шванновскими клетками. Это стимулирует деление клеток бластемы и образование эпидермиса с желёзками, которые в дальнейшем берут синтез белка nAG на себя.

Данное исследование представляет собой важный шаг в изучении механизмов регенерации, хотя, конечно, до полного понимания этого процесса еще очень далеко (примерно так же, как и до полного понимания механизмов онтогенеза).
Скрытый текст
Вы должны войти под своим логином или зарегистрироваться и иметь 25 сообщение(ий)
Правила форума | Регистрация на форуме
Предупреждение: увидев этот блок скрытого текста, не стоит сразу бросаться набивать бессмысленные сообщения. Освойтесь на форуме, проникнитесь его атмосферой и пишите, если Вам действительно есть, что сказать. Если Модератор решит, что Вы набиваете сообщения, он удалит их все, а Вам выдаст либо предупреждение, либо сразу заблокирует Ваш аккаунт.

http://elementy.ru

LiO 14.11.2007 13:55

Названы лауреаты премии «Триумф»

Цитата:

Сегодня были подведены итоги голосования жюри Независимой премии поощрения высших достижений в области науки «Триумф».

Как стало известно корреспонденту «Росбалта», лауреатами 2007 года стали в номинации «Физико-математические науки» — академик Сергей Никольский, в номинации «Механика и технические науки» — академик Георгий Бюшгенс, в номинации «Химия и науки о материалах» — академик Олег Чупахин, в номинации Науки о Земле» — академик Глеб Добровольский, в номинации «Гуманитарные науки» — академик РАО и РАХ Ирина Антонова, в номинации «Науки о жизни, медицина» — член-корреспондент РАН и РАМН Вадим Агол.

Каждый лауреат получит премию в размере, эквивалентном 50тысяч долларов США. Торжественная церемония вручения премии «Триумф-наука» состоится 11 декабря 2007 года.

«Триумф» – ежегодная Российская независимая премия поощрения высших достижений в области науки. В 2000 году Попечительский совет Фонда «Триумф – Новый век» учредил, наряду с премиями в области литературы и искусства, также и шесть ежегодных премий в области науки.

Премия «Триумф» присуждается российским ученым за выдающиеся достижения в экспериментальных и теоретических исследованиях, внесших значительный вклад в развитие отечественной и мировой науки. Фонд «Триумф» совместно с Президиумом РАН формируют жюри научной секции, в состав которого входят ведущие ученые РАН, РАМН и РАСХН. В жюри входят 20 ведущих ученых России, среди них – члены РАН, РАМН, РАСХН.
http://www.rosbalt.ru/2007/11/13/430946.html

Agent 007 15.11.2007 18:22

Кастовая принадлежность у термитов предопределена генетически

Цитата:

До сих пор считалось, что принадлежность термита к той или иной касте зависит только «от воспитания», то есть от того, чем его кормят другие термиты и какие феромоны они при этом выделяют. Японские и австралийские исследователи показали, что так обстоит дело, по-видимому, только у примитивных видов. У более продвинутых форм, таких как распространенный в Японии Reticulitermes speratus, кастовая принадлежность предопределена генетически. Один-единственный ген, расположенный в Х-хромосоме, определяет, по какому из двух возможных путей пойдет развитие насекомого.

У общественных насекомых из отряда перепончатокрылых (муравьев, ос, пчел, шмелей) роль самцов в общественной жизни сведена к минимуму — они нужны только для размножения и больше ни для чего. Все работы по постройке и защите гнезда, уходу за молодью и добыче пропитания возложены на самок. Кем станет данная самка, рабочей особью, отказавшейся от участия в размножении ради заботы о сестрах, или царицей — основательницей новой колонии, зависит исключительно «от воспитания». Второстепенная роль самцов у перепончатокрылых тесно связана с тем обстоятельством, что они развиваются из неоплодотворенных яиц (то есть партеногенетически) и поэтому являются гаплоидными (имеют одинарный набор хромосом). Это делает их, упрощенно говоря, генетически неполноценными существами, на которых лучше не полагаться в сложных и ответственных делах.

У термитов всё по-другому. Самцы у них диплоидные, развиваются из оплодотворенных яиц и наравне с самками служат как рабочими, так и солдатами. У примитивных видов термитов кастовая принадлежность насекомого зависит, как и у муравьев, только от воспитания, и вплоть до весьма поздних стадий индивидуального развития сохраняется возможность выбора. У более эволюционно продвинутых видов, таких как Reticulitermes speratus, судьба насекомого становится предопределенной уже ко времени второй личиночной линьки.

С этого момента развитие насекомого идет по одному из двух путей — «пути нимфы» или «пути рабочего», причем перейти с одного пути на другой уже нельзя.

У нимф образуются зачатки крыльев, и в конце концов они становятся крылатыми взрослыми термитами, способными улететь из гнезда и основать новую колонию.

У рабочих зачатки крыльев не образуются, крылатыми они стать не могут, но некоторые из них после пятой или шестой линьки могут быть призваны на военную службу — стать солдатами.

Термитники живут десятилетиями и, как всякое большое и серьезное предприятие, они располагают средствами для поддержания своей стабильности и жизнеспособности. Гибель царя или царицы в термитнике — дело довольно обычное, и это вовсе не приводит автоматически к смерти всей колонии. В отсутствие размножающихся особей роль «и.о. царя и царицы» могут взять на себя как рабочие бескрылые самцы и самки, так и нимфы с зачатками крыльев. Они приступают к размножению, сохраняя внешний вид ювенильных (неполовозрелых) особей. Размножающихся рабочих называют «эргатоидами», размножающихся нимф — «нимфоидами».

Кроме того, самки всех трех сортов (царицы, нимфоиды и эргатоиды) могут в отсутствие самцов размножаться партеногенетически. Всё потомство при этом оказывается женского пола (у большинства термитов, как и у многих других животных и у людей, самки имеют набор половых хромосом XX, самцы – XY). В отличие от большинства перепончатокрылых, у которых партеногенетическое потомство гаплоидное, у термитов оно диплоидное, то есть имеет двойной набор хромосом. Это происходит за счет простого удвоения гаплоидного хромосомного набора яйцеклетки, поэтому такие термиты оказываются гомозиготными по всем генам (каждый ген представлен двумя идентичными копиями).

Японские и австралийские энтомологи провели серию экспериментов, целью которых было выяснить, чем определяется выбор одного из двух путей развития — воспитанием или генотипом. Для этого они скрещивали между собой в разных комбинациях нимфоидов с эргатоидами, а также заставляли самок размножаться партеногенетически.

Каждой размножающейся паре и каждой партеногенетической самке давали «в помощь» 50 рабочих-самок из другой, неродственной колонии (присутствие рабочих стимулирует откладку яиц). Все отложенные яйца ежедневно забирались из искусственных термитников и отдавались на «воспитание» пятидесяти рабочим-самцам, тоже из неродственной колонии. Таким образом, все личинки воспитывались в одинаковых условиях и в отсутствие размножающихся особей (превращение рабочих в эргатоидов — дело не быстрое, оно занимает 30–40 дней). После третьей линьки ученые регистрировали пол каждой личинки и ее кастовую принадлежность (рабочая или нимфа).

Полученные результаты четко показали, что каста зависит не столько от воспитания, сколько от генотипа, причем ключевую роль в определении кастовой принадлежности играет один-единственный ген, локализованный в X-хромосоме.

Результаты, действительно, получились крайне интересные. Несколько упрощая картину, их можно описать следующим образом:

1) партеногенетическое потомство самок-нимфоидов на 100% состояло из самок-нимф;
2) партеногенетическое потомство самок-эргатоидов наполовину погибло, а почти все выжившие оказались самками-нимфами;
3) потомство от скрещивания самок-нимфоидов с самцами-нимфоидами наполовину состояло из самок-рабочих, наполовину — из самцов-рабочих;
4) потомство от скрещивания самок-нимфоидов с самцами-эргатоидами наполовину состояло из самок-нимф, наполовину — из самцов-рабочих;
5) потомство от скрещивания самок-эргатоидов с самцами-нимфоидами на четверть погибло, а остальные 3/4 состояли в равной пропорции из самцов-нимф, рабочих-самок и рабочих-самцов;
6) потомство от скрещивания самок-эргатоидов с самцами-эргатоидами состояло из самок-нимф, самцов-нимф, самок-рабочих и самцов-рабочих в равной пропорции (1:1:1:1).

Простейшим объяснением полученных результатов является следующая генетическая модель. В X-хромосоме имеется ген (исследователи назвали его worker), который существует в двух аллельных вариантах: A и B. Это дает три возможных генотипа для самок и два для самцов:

XAXA — самка-нимфа,
XAXB — самка-рабочая,
XBXB — леталь (погибает),
XBY — самец-нимфа,
XAY — самец-рабочий.

Дополнительные эксперименты показали, что генетическая детерминация кастовой принадлежности не является абсолютно строгой (воспитание может, например, сделать часть генетических самок-нимф самками-рабочими), но в целом каста зависит от генов намного сильнее, чем от воспитания.

Исследователи полагают, что система генетической детерминации каст возникла как надстройка над исходной «воспитательной» системой. Это дало термитам ряд преимуществ. Образно говоря, строгие законы генетики регулируют кастовый состав колонии более надежно, чем менее строгие законы общественной жизни. Например, генетическая детерминация каст гарантирует, что в молодой колонии, пока основавшие ее царь (XBY) и царица (XAXA) еще живы и полны сил, будут появляться на свет только рабочие особи (XAXB и XAY). Это дает возможность молодой колонии расти быстрее, не тратя энергию на производство крылатых особей. Нимфы начнут появляться только после того, как родители-основатели зачахнут или погибнут, и часть рабочих превратится в эргатоидов.

Авторы предложили также эволюционную модель, объясняющую, в какой последовательности должны были появляться и распространяться аллели гена worker. Сначала должен был распространиться аллель A, что привело к появлению генетически детерминированных рабочих-самцов. Поскольку рабочих-самцов стало больше, это автоматически привело к тому, что среди крылатых выросла доля самок. Это, в свою очередь, создало предпосылки для распространения аллеля B, который сделал генетически детерминированными также и рабочих-самок, а заодно и «выровнял» соотношение полов среди крылатых. То, что в результате иногда стали откладываться нежизнеспособные яйца с генотипом XBXB, было своеобразной «платой» за полученные преимущества.

Модель предсказывает, что в процессе перехода от «воспитательной» детерминации каст к «генетической» должны были появляться своеобразные переходные формы термитов с резко неравным соотношением полов в некоторых кастах. Нечто подобное действительно наблюдается у некоторых термитов. В частности, известно несколько видов, у которых все рабочие и (или) все эргатоиды относятся только к одному полу. Вполне возможно, что переход к генетической детерминации кастовой принадлежности за счет появления тех или иных регуляторных аллелей в половых хромосомах происходил (и продолжает происходить) многократно в разных эволюционных линиях термитов.
http://elementy.ru

CBETA 20.11.2007 04:36

Научное представление о переселении душ

Цитата:

Случаи, когда человек вспоминает о событиях, которые происходили с кем-то другим, и местах, в которых он никогда не бывал, обычно толкуются как сверхестественные. Оказывается, наука имеет свой взгляд на так называемую реинкарнацию
...Девочка убеждена, что имеет взрослых детей, переживает за них, стремится предостеречь от опасностей. Она описывает обстановку дома, мужа, с которым якобы прожила много лет. По совету психиатра, родители отправляются в город, ставший местом действия видений дочери. Там они без труда находят описанные ею улицу и дом, застают всех «родственников».

В интерпретации журналистов такие случаи выглядят как блуждание бессмертной души в иной телесной оболочке. У профессора Элияху Орота своя версия. Он считает, что психика ребенка может подключаться к огромному информационному резерву, скрывающемуся в коллективном бессознательном. Как если бы персональный компьютер подключился к родоплеменному Интернету.

Психика человека оперирует лишь несколькими процентами хранящейся в памяти информации. Ради душевного здоровья мозг обучается не только помнить, но и забывать — то есть откладывать менее актуальную информацию в дальние ячейки памяти.

Версия Элияху Орота логична и более «заземлена», чем теория реинкарнации. Но феномен перевоплощений может быть объяснен и по-другому, с помощью исследований советского физиолога Анохина. Ученый полагал, что так называемые молчащие гены — как бы избыточные, не участвующие в передаче потомству наследственной информации, — вовсе не бездействуют, но кодируют информацию обо всем, что происходит с человеком в течение всей его жизни. Это, по существу, своеобразные гены памяти, многократно дублируемые в организме, которые на молекулярном уровне запоминают все, даже то, что стирает обычная память.

Люди в процессе общения постоянно обмениваются клетками: при рукопожатиях, поцелуях, просто при нахождении в чужом доме, пыль которого содержит отшелушившиеся, но вполне живые клетки его обитателей. Поэтому каждый из нас носит в себе много генетического материала других людей — не всегда знакомых и даже не всегда живых. Обычно этот генетический материал «дремлет», но в каких-то условиях может пробудиться и вызвать изменения в психике носителя. Если донор генетического материала уже завершил свой жизненный путь, носитель позаимствованных клеток словно оживляет в себе его судьбу.

Случаи перевоплощения живущего человека в умершего доказывают, согласно этой гипотезе, большую живучесть генетического материала.

Это принципиально меняет взгляд на само понятие «смерть». Получается, мы не вправе считать смертью ни остановку дыхания, ни прекращение сердцебиения, ни гибель мозга. Пока сохраняется генетический материал человека, умерший может быть воскрешен даже из единственной клетки, например путем клонирования. При этом мы получим не двойника-биоробота, а полноценную личность умершего — ведь «молчащие гены» хранят всю информацию, наработанную индивидом за время жизни. А сохраняться отдельные клетки могут в подходящих условиях сколь угодно долго (профессор Рауль Кано из Калифорнийского политехнического университета оживил микроб, живший 30 миллионов лет назад).

Значит, хранение генетического материала всех живущих на земле людей может стать началом Общего дела, о котором мечтал гениальный философ Николай Федоров. И ничего сверхъестественного для этого не требуется. Чтобы собрать у всех жителей планеты по одному обрезку ногтя или луковичному корню волоса и хранить их в вакуумированных условиях до лучших времен массового развития технологии клонирования, затрат требуется не больше, чем на производство одной атомной бомбы.

Стоит лишь захотеть массового бессмертия и осознать его как этическую задачу. Тогда реинкарнация будет обеспечена всем: и мне, и каждому читающему эти строки.
Савелий Кашницкий
http://www.aif.ru/

LiO 26.11.2007 21:57

Вложений: 1
Вложение 34860
Высокотемпературный сверхпроводник BSCCO может излучать когерентные терагерцевые волны. Изображение авторов исследования.

Создан новый источник Т-лучей

Цитата:

Физики создали сравнительно мощный источник электромагнитных волн терагерцевого диапазона. Т-волны потенциально могут эффективно применяться в медицине для диагностики рака и других заболеваний, а также в службах безопасности для поиска спрятанных предметов, сообщает портал PhysicsWorld.

Т-волнами называют электромагнитные волны с частотой порядка 1012 герц (обычно от 300 гигагерц до трех терагерц). Это соответствует длинам волн от одного миллиметра (край высокочастотной микроволновой области) до ста микрометров (край дальней инфракрасной области). Считается, что Т-волны могут выполнять часть функций, который сейчас выполняют рентген и ультразвук, с большей эффективностью (в частности, потому что они причиняют тканям организма меньше повреждений, чем рентген).

Проблема в том, что Т-волны достаточной мощности довольно сложно получить. Частота волн слишком высока, чтобы их могли излучать полупроводниковые устройства, но слишком низка для твердотельных лазеров.

Для получения Т-волн можно использовать так называемые джозефсоновские переходы: устройства, состоящие из двух сверхпроводников, разделенных тонким слоем изолятора, которые применяются в квантовых технологиях. При подаче на переход постоянного напряжения он начинает излучать фотоны с частотой, соответствующей энергетической щели сверхпроводника. Можно добиться того, чтобы переход излучал и Т-волны, но мощность устройства будет слишком низкой.

Коллектив американских, турецких и японских ученых под руководством Ульриха Велпа (Ulrich Welp) из Аргоннской национальной лаборатории США решил проблему использованием высокотемпературных сверхпроводников, состоящих из множества джозефсоновских переходов, которые излучают синфазные волны.

Группа Велпа работала с высокотемпературным сверхпроводником Bi2Sr2CaCu2O8, также называемым BSCCO (высокотемпературный не следует понимать буквально - свойства сверхпроводимости у BSCCO появляются при температуре около -173 по Цельсию). Сама структура BSCCO устроена так, что он состоит из множества джозефсоновских переходов: слоев сверхпроводника CuO2, разделенных изоляторами BiO и SrO. Энергетическая щель сверхпроводника такова, что переходы способны излучать Т-волны.

Для того чтобы переходы излучали синфазно, исследователи варьируют напряжение, подаваемое на фрагмент BSCCO, до тех пор, пока частота излучения не совпадет с резонансной частотой фрагмента. После этого все переходы постепенно начнут излучать именно на этой частоте.

Группа Велпа использовала фрагмент BSCCO высотой около 300 нанометров, который содержал около 200 тысяч джозефсоновских переходников и мог генерировать волны частотой до 0,85 терагерц, при этом мощность устройства составляла 0,5 микроватт. В ближайшем будущем ученые надеются довести мощность до одного милливатта, что уже достаточно, например, для поиска следов взрывчатки.
http://www.lenta.ru/news/2007/11/26/tera/

Agent 007 30.11.2007 21:51

Нейробиология, психология
 
Потеря памяти не ведет к утрате «теории разума»


Цитата:

Считалось, что способность понимать и предвидеть ход мыслей, эмоции и поступки других людей («теория разума») основана на памяти о событиях личной жизни, которые человек может переносить на других, представляя себя на их месте. Однако исследование двух пациентов, утративших «эпизодическую» память в результате травмы, опровергло эти представления. Несмотря на полную неспособность вспомнить какие-либо события собственной жизни, эти пациенты справились со всеми тестами на «теорию разума» ничуть не хуже здоровых людей.

«Теория разума» считается одной из основных отличительных черт человеческого мышления. Хотя зачатки этой способности есть и у животных — обезьян, слонов, дельфинов, врановых птиц и др. — человек заметно превосходит их по точности и глубине понимания чужих мыслей, эмоций, поступков и мотивов.

Теория разума тесно связана с самосознанием, в ее основе лежит суждение о других «по себе». Поэтому психологи считали само собой разумеющимся, что для понимания чужих мыслей абсолютно необходима так называемая эпизодическая память, то есть память о собственных мыслях и переживаниях в разных ситуациях и вообще о событиях личной жизни.

Несколько слов о классификациях типов памяти. Подобные классификации уже перешли из области гуманитарных наук в сферу наук естественных, поскольку сегодня они основываются на вполне материальных различиях нейробиологических механизмов формирования и хранения соответствующих воспоминаний, а не только на их содержании. Память бывает декларативная (сознательная, эксплицитная — память о фактах и событиях) и процедурная (бессознательная, имплицитная — например, память о двигательных навыках).

Декларативная память, в свою очередь, делится на семантическую и эпизодическую. Семантическая память — это абстрактные, безличностные знания об объектах, событиях, фактах и связях между ними, никак не связанные с личным опытом. Эпизодическая память, напротив, хранит информацию о событиях личной жизни, о собственных переживаниях, мыслях и т. д.

Так вот, считалось, что именно эпизодическая память теснее всего связана с «теорией разума», что без личных воспоминаний невозможно понять мысли и мотивацию поступков других людей.

Для проверки подобных идей огромную ценность представляют люди, которые в результате травмы или болезни утратили выборочно те или иные психические функции. Например, изучение пациента H.M. (HM patient), полностью потерявшего способность к формированию декларативных (но не процедурных) воспоминаний, обеспечило прорыв в понимании механизмов памяти.

И вот теперь в руки канадских психологов попали сразу два уникальных пациента, у которых в результате черепно-мозговой травмы произошли психические изменения еще более редкого и избирательного свойства. Оба мужчины (K.C. и M.L.) стали объектами пристального внимания ученых из-за дорожной аварии (один был мотоциклистом, другой велосипедистом). У обоих от сильного удара головой полностью отшибло эпизодическую память. При этом большинство других психических функций осталось в пределах нормы. Пациенты сохранили нормальный уровень интеллекта (IQ = 102 и 108). При них остались все те знания, которые они успели получить до травмы (то есть семантическая память не пострадала). Правда, способность приобретать новые знания они в значительной степени утратили из-за повреждений гиппокампа и других отделов мозга. Но все личные воспоминания стерлись напрочь. Пациенты не могут вспомнить ни одного эпизода из своей жизни — ни до травмы, ни после.

Исследователи, наблюдавшие пациентов, были удивлены тем обстоятельством, что в общении эти люди казались совершенно нормальными, вплоть до того, что у K.C. даже сохранилось тонкое чувство юмора. А ведь без теории разума, то есть без понимания мыслей и чувств других людей, нормальное общение и юмор едва ли возможны. Это и навело ученых на мысль, что у них есть уникальный шанс опровергнуть гипотезу о неразрывной связи теории разума с эпизодической памятью.

Пациентам предложили пройти серию стандартных тестов, специально разработанных для выявления дефектов «теории разума». Те же задания были предложены контрольной группе из 14 здоровых людей, близких по уровню образования и социальному статусу к двум исследуемым мужчинам.

Подробное описание тестов можно найти в дополнительных материалах к статье. В частности, там были тесты, в которых испытуемый должен был понять, что другой человек не знает чего-то, что самому испытуемому известно, или разобраться в поведении двух людей, один из которых имеет ошибочное представление о том, что думает или знает другой. В других тестах нужно было понять, не нанес ли один человек другому непреднамеренную обиду в той или иной ситуации, и объяснить, почему не следовало так поступать и что именно чувствовал обиженный. Были также тесты на способность понимать чужие эмоции по выражению лица и ряд других заданий. Подобные тесты применяют при диагностике различных форм аутизма (люди, страдающие аутизмом, имеют ослабленную «теорию разума» и обычно не справляются с такими заданиями).

Оба пациента справились со всеми тестами ничуть не хуже здоровых людей. Авторы сделали из этого справедливый вывод, что эпизодическая память не является обязательным условием наличия у человека нормальной «теории разума». По-видимому, для этого вполне достаточно одной лишь абстрактной семантической памяти. Впрочем, полученный результат вовсе не доказывает, что эпизодическая память не нужна для формирования теории разума. Очевидно, что способность понимать чужие мысли и поступки сформировалась у пациентов еще до травмы, когда с эпизодической памятью у них всё было в порядке.
http://elementy.ru

LiO 06.12.2007 17:35

Вложений: 1
Вложение 35955
Один из видов установки для определения модуля сдвига. Фото с сайта cnit.susu.ac.ru.


Сверхтекучий твердый гелий оказался сверхжестким

Цитата:

Исследуя твердый гелий - вещество, недавно продемонстрировавшее "сверхтекучесть", - канадские ученые обнаружили у также него аномально высокую сопротивляемость деформации сдвига при сверхнизких температурах, сообщает журнал Nature.

Твердый гелий можно получить только при температуре менее двух кельвинов и давлении выше 25 атмосфер. В 2004 году группа ученых под руководством Мозеса Чаня (Moses Chan) обнаружила, что при температуре ниже 0,2 кельвина (-272,95 по Цельсию) гелий, сохраняя свойства твердого тела, парадоксальным образом начинает демонстрировать свойства сверхтекучести: часть вещества приобретает нулевую вязкость и может течь сквозь остальную часть без трения.

Канадские физики подвергли твердый гелий другому испытанию: проверили его сопротивляемость деформации сдвига. Оказалось, что при самых низких температурах гелий становится значительно более "жестким": при температуре менее 0,25 кельвина его модуль сдвига возрастает на 20 процентов.

Чань считает, что это неожиданное изменение свойств связано со сверхтекучестью и, возможно, имеет ту же причину.

Cверхтекучее твердое тело (supersolid) иногда называют новым состоянием материи (гелий - единственный известный пример). Напрямую, однако, сверхтекучесть наблюдать невозможно - Чань основывал свои выводы на изменении физических свойств цилиндра с твердым гелием. Некоторые ученые считают, что его интерпретация наблюдаемых явлений неверна и сверхтекучих твердых тел все же не существует.
http://www.lenta.ru/news/2007/12/06/helium/

LiO 14.12.2007 16:28

Вложений: 1
Вложение 36884
Фискомитрелла раскрытая (Physcomitrella patens)

Геном мха оказался вдвое длиннее генома человека

Цитата:

Международный коллектив ученых расшифровал геном мха-фискомитреллы (Physcomitrella patens) - потомка примитивных растений, выбравшихся на сушу одними из первых. В геноме оказалось почти вдвое больше генов, чем, по оценкам, содержится в геноме человека, сообщает журнал Science.

Это первая расшифровка генома бессосудистого растения (растения, лишенного специальных тканей, по которым циркулирует жидкость, как у высших растений). Над проектом работали ученые из 44 учреждений по всему миру.

Фискомитрелла - однолетний бледно-зеленый напочвенный мох со стеблями от двух до семи миллиметров высотой. Растет отдельными побегами или образует небольшие группы. Распространен во многих регионах, в том числе и в России.

По сложности устройства мох относится к цветковым растениям примерно так же, как муха-дрозофила - традиционный объект генетических исследований - к человеку. Тем не менее, в его геноме оказалось около 36 тысяч генов (у человека, по оценкам, 20-25 тысяч) и 500 миллионов нуклеотидов (у человека - около трех миллиардов).

Мхи были одними из первых растений, колонизировавших сушу около 450 миллионов лет назад. Многие гены фискомитреллы отвечают за возможность жить на суше: восстанавливаться после иссушения, переживать длительный недостаток воды, залечивать повреждение, причиненные солнечным светом. Около 20 процентов генов оказались совершенно новыми для исследователей.

Ученые надеются, что данные о геноме мха позволят восстановить генетические характеристики его предка (общего с цветковыми растениями). Кроме того, мох - удобный объект для генетических экспериментов, особенно для исследования клеточных стенок. Гены мха сравнительно легко модифицировать, типов клеток у него немного, а жизненный цикл проходятся быстро. Возможно, исключительная приспособляемость мха пригодится при создании генно-модифицированных пищевых культур с повышенной устойчивостью.
http://www.lenta.ru/news/2007/12/14/moss/

LiO 18.12.2007 15:35

Вложений: 1
Вложение 37283
Лакшминараянан Махадеван.

Физики-теоретики спроектировали ковер-самолет

Цитата:

Французские и американские физики спроектировали "ковер-самолет": тонкий лист из легкого материала, который может лететь по воздуху в заданном направлении за счет собственных колебаний, сообщает журнал Nature.

Как пишут в своей статье в Physical Review Letters сами исследователи - Лакшминараянан Махадеван (Lakshminarayanan Mahadevan) из Гарвардского университета и его коллеги - им удалось "частично ответить на один из давних вопросов "физики мультиков" (так в Америке шутливо называют многочисленные нарушения законов физики в мультиках - прим. "Ленты.ру") - могут ли ковры летать".

Исследуя движение гибкого тонкого колеблющегося листа в жидкости, ученые пришли к выводу, что подобный "ковер" можно заставить передвигаться и в воздухе. Если ковер находится достаточно близко к горизонтальной поверхности, его колебания заставляют воздух (или жидкость) течь таким образом, что между ковром и поверхностью возникает высокое давление, которое и играет роль подъемной силы.

Ковер сможет не только подниматься, но и лететь вперед. Если колебания будут распространяться по ковру с одной стороны, это заставит его принять слегка наклонное положение и двигаться в направлении того конца, который будет выше.

Ковры, однако, столкнутся с рядом серьезных ограничений. Теоретически они могут быть сколь угодно велики, но практически для подъема ковра сколько-нибудь значительного размера потребуется исключительно сильный двигатель. Для того чтобы ковер длиной десять сантиметров и толщиной 0,1 миллиметр оставался в воздухе, ему придется вибрировать с частотой около десяти герц и амплитудой колебаний около 0,25 миллиметров (то есть волны амплитудой в два с половиной раза больше толщины ковра должны будут пробегать по нему десять раз в секунду).

Пока ковер, который имел бы практическое применение, не построен, однако есть основания полагать, что работа в этом направлении имеет смысл. Так, в сентябре другая группа гарвардских ученых создала тонкие полимерные листы, покрытые клетками из мышечной ткани крыс. Воздействуя на такие листы электрическим током, можно заставлять их периодически сокращаться и за счет этих колебаний передвигаться в жидкости.

Напомним, что Лакшминараянан Махадеван является лауреатом Антинобелевской премии за 2007 год за исследования образования складок на белье.
http://www.lenta.ru/news/2007/12/17/carpet/

LiO 20.12.2007 15:44

В РАН создается отделение нанотехнологий

Цитата:

В Москве на Общем собрании Российской академии наук было принято решении о создании отделения нанотехнологий.

С этой целью будет преобразовано отделение информационных технологий и вычислительных систем, которое возглавляет президент Российского научного центра "Курчатовский институт" академик Евгений Велихов.

По словам президента РАН Юрия Осипова, создание нового отделения потребует расширения общего количества членов академии и избрания еще десяти академиков и двадцати членов корреспондентов академии наук. Соответствующие поправки в Устав Академии были приняты большинством голосов.
http://www.mk.ru/blogs/MK/2007/12/20/srochno/330056/

LiO 21.12.2007 22:12

Вложений: 1
Вложение 37573
Структура нового материала. Атомы цинка - зеленым, теллура - красным, азота - синим, углерода - серым, атомы водорода для простоты не отображены.


Создан новый полупроводник с нулевым тепловым расширением

Цитата:

Американские ученые создали новый полупроводник с нулевым коэффициентом теплового расширения для одного из измерений, сообщает Аргоннская национальная лаборатория США в своем пресс-релизе.

Нагревание полупроводников представляет серьезную проблему для микропроцессоров: материал расширяется, что может вызвать появление трещин, которые, в свою очередь, приводят к прерыванию тока, отделению полупроводника от подложки, разрушению микросхемы.

Материалы с нулевым коэффициентом теплового расширения - не расширяющиеся при нагревании - уже используются в оптике, тепловых двигателях, кухонном оборудовании, однако таких, которые имели бы широкое применение в электронике, пока не создано, отмечают специалисты из Аргоннской лаборатории.

Разработчики создали устойчивый кристалл, состоящий из органических и неорганических веществ. Материал состоит из чередующихся слоев теллурида цинка (ZnTe) и этилендиамина (C2N2H8). Когда один слой расширяется, другой сокращается, за счет чего и достигается общее нулевое расширение (именно нулевое, а не отрицательное - материал и не сокращается, что тоже могло бы быть вредно).

Пока нулевого коэффициента удалось добиться только для одного измерения (по двум другим размер кристалла изменяется), но исследователи считают, что тот же принцип - кристалл из чередующихся слоев, специальным образом упорядоченных на наноуровне - потенциально можно применить также и к большему числу измерений.
http://www.lenta.ru/news/2007/12/20/zte/

LiO 22.12.2007 15:50

Вложений: 1
Вложение 37604

Слева: наглядное представление теории для трех фундаментальных постоянных (куб Гамова-Иваненко-Ландау), справа: для двух. Изображение авторов исследования.


Физики определили число фундаментальных постоянных

Цитата:

Группа бразильских физиков предлагает свой ответ на вечный вопрос: сколько фундаментальных постоянных необходимо и достаточно иметь для построения адекватного описания Вселенной? Джордж Матсас и его коллеги уверены, что две, сообщает журнал Nature.

Речь идет только о постоянных, имеющих размерность (измеряемых в определенных единицах, как, например, скорость света - в метрах в секунду).

Цель исследования - представить не одно из возможных философских мнений, а объективную истину, подчеркивают авторы в препринте своей статьи, выложенном на arXiv.org. Для практических подсчетов или конкретных теорий можно использовать столько постоянных, сколько удобно, но все их (и, следовательно, все измеряемые величины) можно выразить через некоторое количество фундаментальных постоянных. Например, в современной физике используется постоянная Больцмана, без которой при желании можно обойтись, переопределив понятие температуры - это, однако, сопряжено с некоторыми неудобствами. Таким образом, подлинно фундаментальной она не является.

Единого мнения о том, сколько нужно этих постоянных, не существует. Макс Планк предполагал, что их четыре, впоследствии распространилось мнение, что три: скорость света, гравитационная постоянная (коэффициент гравитационного взаимодействия) и постоянная Планка (связывает энергию электромагнитного излучения с его частотой). Некоторые ученые считают, что можно обойтись вообще без размерных постоянных, все выразив через безразмерные.

Исходя из предпосылки, что непосредственно измерять мы можем только две величины - протяженности временных и пространственных интервалов – Матсас доказывает, что необходимо только две постоянных. Это могут быть любые две из трех перечисленных выше: через них можно выразить любую другую постоянную или физическую величину.
http://www.lenta.ru/news/2007/12/21/constants/

Fit 25.12.2007 09:21

Вложений: 1
Опубликован список ТОП-10 научных открытий 2007 г.

Журнал Science опубликовал список 10 самых значимых, по мнению редакции, научных открытий, совершенных в мире в 2007 г.
Вложение 37913
Цитата:

Список выглядит следующим образом:

1. Исследование вариаций человеческого генома.

Участники проекта HapMap создали карту ДНК, на которой отмечены локации однонуклеотидных полиморфизмов – вариаций ДНК, отличающихся у разных людей на 1 нуклеотид. К концу 2007 г. ученые обнаружили уже более 3 млн таких вариаций в человеческом геноме. По мнению исследователей, это позволит определить гены, ответственные за развитие многих болезней.

2. Преобразование клеток кожи в полипотентные клетки.

Японской исследовательской группе удалось преобразовать клетки кожи путем внедрения в них 4 генов. Данная технология позволит регенерировать утраченные ткани без использования человеческих стволовых клеток, операции с которыми вызывают этические проблемы, так как связаны с гибелью человеческих зародышей.

3. Новая гипотеза об источниках космического излучения сверхвысоких энергий.

Группа ученых из аргентинской обсерватории Пьера Оже (Pierre Auger) высказала предположение о том, что источниками космического излучения сверхвысоких энергий являются активные ядра галактик.

4. Исследования бета-2-адренергического рецептора человека.

Данный рецептор является белком клеточной мембраны, играющим важную роль в регуляции работы сердца и легких. Бета-2-адренергический рецептор принадлежит к классу G-белоксопряженных рецепторов, отвечающих за развитие множества заболеваний, а также восприятие неклеточных стимулов – цвета, звука и т.д.

5. Открытие новых свойств оксидов переходных металлов.

Британские исследователи создали модель, описывающую свойства металлических оксидов с высокой диэлектрической постоянной, которые могут использоваться вместо оксида кремния в качестве затворного диэлектрика транзисторов.

6. Наблюдение квантового эффекта Холла при комнатной температуре.

Физикам из США и Нидерландов удалось зафиксировать квантовый эффект Холла при комнатной температуре, поместив графен в сильное магнитное поле. Полученный результат может привести к упрощению процедуры калибровки сопротивлений.

7. Ассиметричное деление лимфоцитов.

Группа американских ученых показала, что Т-лимфоциты млекопитающих могут под воздействием патогена делиться несимметрично, в результате чего возникают две разные клетки – эффекторная и клетка памяти.

8. Достижения в области контроля над химическими реакциями.

Химики в текущем году активно разрабатывали технологии контроля над химическими реакциями, не связанные с использованием дорогостоящих очистки и разделения.

9. Нахождение связи между памятью и воображением.

Британские нейрофизиологи обнаружили, что пациенты, страдающие амнезией из-за повреждений гиппокампа, испытывают трудности и с воображением.

10. Создание непобедимой программы для игры в шашки.

Канадские ученые усовершенствовали компьютерную программу для игры в шашки Chinook так, что теперь она может просчитывать все возможные комбинации.



cnews.ru

Alfard 07.01.2008 21:26

Какая странная волна
 
Вложений: 3

Науке до сих пор неизвестен механизм образования гигантских волн

Цитата:

За тысячи лет мореплавания люди научились бороться с опасностями водной стихии. Лоции указывают безопасный путь, синоптики предупреждают о штормах, спутники наблюдают за айсбергами и другими опасными объектами. Однако до сих пор непонятно, как уберечься от тридцатиметровой волны, которая неожиданно возникает без видимых причин. Еще пятнадцать лет назад загадочные волны-убийцы считались выдумкой.

Кто такие волны-убийцы

Волны-убийцы - внезапно возникающие на морской поверхности неожиданно высокие волны. За счет удивительности и опасности этого явления, а также очень короткой научной традиции его исследования названий у него множество: аномально высокие волны, экстремальные волны, волны-шатуны, блуждающие волны, волны-монстры (в англоязычной литературе - rogue waves, abnormal waves, exceptional waves, giant waves, steep wave events).

Строгое определение гласит, что волнами-убийцами считаются волны, высота которых более чем в два раза превышает значимую высоту волн. Значимая высота волн рассчитывается для заданного периода в заданном регионе. Для этого отбирается треть всех зафиксированных волн, имеющих наибольшую высоту, и находится их средняя высота.

Волны-убийцы не следует путать с цунами: цунами возникают в результате сейсмических явлений и набирают большую высоту лишь вблизи от берега, тогда как волны-убийцы могут появляться без известных причин, практически на любом участке моря, при слабом ветре и относительно небольшом волнении. Цунами опасны для береговых сооружений и судов, стоящих близко к берегу, в то время как волна-убийца может погубить любое судно или морское сооружение, которое ей подвернется.

Волны-убийцы долгое время считались морским мифом: современные теории волнообразования (которые, в общем, работают довольно успешно) предсказывают, что вероятность появления таких волн ничтожно мала. Чем больше волна, тем реже она появляется (если только ее не вызывает какая-то геофизическая катастрофа) - даже при сильном ветре и большом волнении волны-убийцы должны были бы появляться настолько редко, что люди с ними, скорее всего, на просторах Мирового океана никогда бы не сталкивались.

Тем более невозможно было поверить в мистические волны, возникающие ниоткуда. Отдельные свидетельства очевидцев, даже подтвержденные фотографиями, объяснялись эффектом "у страха глаза велики". Действительно, на глаз трудно оценить высоту огромной волны, особенно находясь на атакованном ей корабле. Однако когда гигантские валы были многократно зарегистрированы приборами, наука окончательно признала их существование.

История исследования

Первым надежным инструментальным свидетельством появления волны-убийцы считаются показания приборов на нефтяной платформе "Дропнер", расположенной в Северном море. Первого января 1995 года при значимой высоте волн 12 метров (что немало, но вполне обычно) вдруг возникла 26-метровая волна, обрушившаяся на платформу. Характер повреждений оборудования соответствовал указанной высоте волны.

Когда волны-убийцы получили официальное признание, ими занялись всерьез. В частности, были переоценены многие морские катастрофы. Свидетельства о волнах-убийцах, ранее не вызывавшие доверия, стали восприниматься гораздо серьезнее. Некоторые ученые предполагают, что за период с 1968 по 1994 год волны-убийцы погубили 22 супертанкера (а погубить супертанкер очень непросто). Эксперты, однако, расходятся в оценках причин многих кораблекрушений: неизвестно, участвовали ли в них волны-убийцы.

Тем не менее некоторые случаи общепризнаны. Так, в 1974 году у побережья Южной Африки волна-убийца сильно повредила норвежский танкер "Уильстар". В 1975 году в Верхнем озере (обратите внимание - на Великих озерах, не в открытом море!) по судну "Андерсон" ударили две волны-убийцы. Обошлось без серьезных повреждений, но впоследствии оказалось, что в это же время неподалеку затонуло, не успев даже подать сигнал бедствия, грузовое судно "Эдмунд Фицджеральд". Все члены экипажа погибли, поэтому точная причина катастрофы неизвестна, но есть основания считать, что волны-убийцы внесли свой вклад в крушение судна (или даже являлись единственной причиной).
В 1980 году с волной-убийцей столкнулся российский танкер "Таганрогский залив". Интересно, что в этом случае, судя по описанию, волна пришлась ровно на корабль (вообще говоря, ширина гигантских волн может достигать нескольких сот метров).

В 2001 году на юге Атлантического океана суда "Бремен" и "Каледониан стар" были атакованы несколькими тридцатиметровыми волнами, которые повредили капитанские мостики и уничтожили навигационное оборудование. В 2005 году пассажирское судно "Норвиджиан Дон" около побережья Северной Америки столкнулось с тремя волнами-убийцами, которые серьезно повредили даже верхние палубы.

В 2000 году Европейское космическое агентство (ESA) запустило проект исследования волн-убийц MaxWave. Спутниковые наблюдения обнаружили, что волны-убийцы возникают в океане чуть ли не раз в два дня.

Анализ данных радаров нефтяной платформы Гома в Северном море показал, что за 12 лет в доступном поле обозрения было зафиксировано 466 волн-убийц. Теоретические расчеты показывали, что в этом регионе появление волны-убийцы могло бы происходить примерно раз в десять тысяч лет.

Что может волна-убийца

Обычно волна-убийца описывается как быстро приближающаяся водяная стена огромной высоты. Перед ней движется впадина глубиной несколько метров - "дыра в море". Высота волны обычно указывается именно как расстояние от высшей точки гребня до низшей точки впадины. По внешнему виду "волны-убийцы" делятся на три основных типа: "белая стена", "три сестры" (группа из трех волн), одиночная волна ("одиночная башня").


Чтобы оценить, что они могут, достаточно взглянуть на фотографию "Уильстара" выше. Поверхность, на которую обрушивается такая волна, может испытывать давление до ста тонн на квадратный метр (около 980 килопаскалей). Типичная двенадцатиметровая волна угрожает лишь шестью тоннами на квадратный метр. Большинство современных судов может выдержать до 15 тонн на квадратный метр.

По наблюдениям Национального управления океанических и атмосферных исследований США (NOAA), волны-убийцы бывают рассеивающиеся и нерассеивающиеся. Нерассеивающиеся могут проделать по морю довольно долгий путь: от шести до десяти миль. Если судно замечает волну издали, можно успеть принять какие-то меры. Рассеивающиеся же появляются буквально ниоткуда (видимо, такая волна атаковала "Таганрогский залив"), обрушиваются и исчезают.

По мнению некоторых экспертов, волны-убийцы опасны даже для низко летающих над морем вертолетов: в первую очередь, спасательных. Несмотря на кажущуюся маловероятность такого события, авторы гипотезы считают, что ее нельзя исключать и что как минимум два случая гибели спасательных вертолетов похожи на результат удара гигантской волны.

Откуда берутся волны-убийцы

Удовлетворительного ответа на этот вопрос не существует. Реальная частота их появления очевидным образом расходится с предсказанной теоретически. Было предложено несколько теорий специально для объяснения этого феномена, некоторые из них были удачны в отдельных аспектах, но ни одна пока не получила полного признания.


Ученые пытаются выяснить, как энергия в океане перераспределяется таким образом, что образование волн-убийц становится возможным. Поведение нелинейных систем, подобных морской поверхности, описать крайне сложно. Некоторые теории используют для описания возникновения волн нелинейное уравнение Шредингера. Некоторые пытаются применить существующие описания солитонов - одиночных волн необычной природы. В ходе последнего исследования на эту тему ученым удалось воспроизвести очень похожее явление в электромагнитных волнах, однако к практическим результатам это пока не привело.

Некоторые эмпирические данные о том, в каких условиях возникновение волн-убийц более вероятно, все же известны. Так, если ветер гонит волны против сильного течения, то это может привести к появлению высоких крутых волн. Этим печально известно, например, течение Игольного мыса (в котором пострадал "Уильстар"). Другими зонами повышенной опасности являются течение Куросио, Гольфстрим, Северное море и прилегающие районы.

Эксперты называют следующие предпосылки для возникновения волны-убийцы: 1) область пониженного давления; 2) ветер, дующий в одном направлении более 12 часов подряд; 3) волны, движущиеся с той же скоростью, что и область пониженного давления; 4) волны, движущиеся против сильного течения; 5) быстрые волны, догоняющие более медленные волны и сливающиеся с ними вместе.

Вздорный характер волн-убийц, однако, проявляется в том, что они могут возникать и тогда, когда перечисленные условия не выполняются. В этой непредсказуемости и заключается основная загадка для ученых и опасность для моряков.

Александр Бердичевский
Источник: http://www.lenta.ru/articles/2007/12/14/waves/

Agent 007 10.01.2008 13:40

Экология
 
Биосфера уже не справляется с избытком СО2

Цитата:

Экосистемы поглощают всё меньшую долю от того огромного количества углекислого газа, которое ежегодно попадает в атмосферу в результате сжигания ископаемого топлива, производства цемента и выжигания растительности. Если до недавнего времени по мере увеличения выбросов СО2 в атмосферу пропорционально возрастало и связывание его растениями в ходе фотосинтеза (в меньшей степени — также фитопланктоном океана), то теперь биосфера за человеком уже не успевает. К такому тревожному выводу пришла группа ученых из разных стран на основании исследования сезонных колебаний концентрации СО2 в различных точках Северного полушария. В статье, опубликованной в последнем номере журнала Nature, сообщается, что усиление связывания СО2 растительностью весной (которая становится теплее и наступает всё раньше) фактически сводится на нет резким усилением выделения СО2 экосистемами в осенний период (который всё чаще становится аномально теплым). Осеннее выделение СО2 есть результат резкого усиления процесса дыхания всех организмов (в том числе растений, но главным образом бактерий и грибов) в ответ на повышение температуры.

Содержание в атмосфере углекислого газа растет чрезвычайно быстро, что не может не вызывать всеобщей озабоченности, поскольку при этом усиливается парниковый эффект (удержание тепла у поверхности Земли) и развивается глобальное потепление. Если в середине XVIII века, до начала промышленной революции, содержание СО2 в атмосфере было около 280 ppm (parts per million, частей на миллион), или 0,028%, то сейчас концентрация его достигла 381 ppm. Меняется и скорость ежегодного прироста: в 1990-е годы она составляла 1,3% от текущей величины, а в период с 2000-го по 2006 год — уже 3,3%. Таких высоких абсолютных значений концентрации СО2 и темпов ее прироста не наблюдалось еще ни разу по крайней мере за последние 650 тыс. лет (срок, для которого имеются надежные данные на основании анализа газового состава пузырьков воздуха, запечатанных во льду Антарктиды).

Содержание углекислого газа в атмосфере на самом деле могло бы расти еще быстрее. Однако, к счастью для нас, примерно половина того количества СО2, которое попадает в атмосферу при сжигании ископаемого топлива, связывается в результате фотосинтеза наземной растительности, а в меньшем объеме — и океанического фитопланктона. Изучающие глобальный цикл углерода всё чаще обращают внимание на одно обстоятельство: хотя по мере увеличения выбросов СО2 в результате сжигания ископаемого топлива растет и концентрация СО2 в атмосфере, соотношение приростов этих двух величин (то есть поступления СО2 и наблюдаемой его концентрации) не меняется. Иными словами, биосфера (а более точно — совокупность фотосинтезирующих организмов) поглощает всё большее абсолютное количество углерода.

Но каковы возможности экосистем по связыванию углекислого газа? Очевидно, поглощать дополнительное количество СО2 экосистемы будут только до тех пор, пока будет увеличиваться масса растительности и/или масса органического вещества, надолго выводимая из круговорота, например попадающая в почву, в болота или в донные отложения озер. Рано или поздно предел связывания СО2 экосистемами будет достигнут, и тогда скорость прироста содержания СО2 в атмосфере сразу возрастет по меньшей мере в два раза. Это произойдет даже в том случае, если выбросы останутся на прежнем уровне (что само по себе маловероятно). То, что «углеродная емкость» океана уже достигла предела и связывание океаном дополнительного количества СО2 сокращается, доказано недавно прямыми наблюдениями.

И вот в только что вышедшем номере журнала Nature (от 3 января 2008 года) опубликована статья, в которой сообщается о тревожных признаках сокращения возможностей поглощения СО2 также и наземными экосистемами. Авторы статьи из Лаборатории изучения климата и окружающей среды (Laboratoire des Sciences du Climat et de l'Environnement, Жиф-сюр-Ивет, Франция) и других учреждений Франции, а также Бельгии, Канады, Китая, США, Швеции и Финляндии (всего 16 человек) сосредоточили свое внимание на соотношении многолетнего тренда увеличения СО2 в атмосфере и регулярных сезонных колебаний концентрации СО2, происходящих на фоне этого тренда.

Как эти две динамики (многолетняя и сезонная) соотносятся, можно пояснить на примере самого длинного (почти за полвека) ряда данных, полученных обсерваторией Мауна-Лоа на острове Гавайи. График, суммирующий результаты измерений, показывает как непрерывный рост, так и небольшие, но регулярные сезонные колебания концентрации СО2: максимум приходится на апрель–май, а минимум — на сентябрь–октябрь. Возникают эти колебания из-за того, что процесс потребления углекислого газа, а именно фотосинтез растений, происходит только в теплый период с конца весны и до окончания лета (в северном полушарии это май–август). Осенью, зимой и в начале весны фотосинтез невозможен (по крайней мере в умеренных и северных широтах, где устанавливаются отрицательные температуры).

Но параллельно в любой экосистеме протекает процесс, обратный фотосинтезу, — дыхание (разложение органического вещества с потреблением кислорода и выделением СО2). Хотя дышат все организмы, поступление в атмосферу основной массы углекислого газа почти целиком определяется дыханием бактерий и грибов. Дыхание происходит в течение более длительного периода, чем фотосинтез. Летом, когда тепло, интенсивность его особенно велика, но на это же время приходится пик фотосинтеза, и в результате связывается СО2 гораздо больше, чем выделяется. Но как только фотосинтез ослабляется, соотношение потребления и выделения СО2 сдвигается в сторону выделения и концентрация СО2 в воздухе растет.

Авторы обсуждаемой работы на примере нескольких непрерывных (продолжающихся по меньшей мере 15 лет) рядов наблюдений за изменениями содержания СО2 в разных точках Северного полушария проследили, как меняется во времени положение тех точек на графике, где линия сезонных колебаний пересекает линию основного тренда. Таких точек за год две. «Весеннее пересечение» соответствует моменту, когда кривая содержания СО2 идет вниз: в результате интенсивного фотосинтеза процессы связывания этого газа начинают преобладать над выделением. «Осеннее пересечение» соответствует моменту, когда кривая идет вверх, и выделение СО2 в результате дыхания начинает преобладать над связыванием его в ходе фотосинтеза.

До самого последнего времени предполагалось, что отмечавшееся увеличение потребления СО2 растительностью происходит прежде всего за счет удлинения вегетационного сезона — периода активного роста растений. И действительно, весна фенологически, например по срокам распускания листьев, наступает всё раньше и раньше (в Западной Европе по сравнению 1960-ми годами в среднем уже на 12 дней раньше), а осень всё чаще бывает аномально теплой. По идее, подобные климатические изменения и следующие за ними изменения фенологические должны сказаться и на характере сезонной динамики содержания СО2. «Весеннее пересечение» должно наступать всё раньше, а «осеннее» всё позже.

Но проверка этой гипотезы на реальных данных выявила неожиданную тенденцию: если «весеннее пересечение» действительно стало наблюдаться раньше, то «осеннее пересечение» тоже сдвинулось на более ранние сроки (а не поздние, как ожидалось). Произошло это потому, что благодаря высоким температурам осенью очень резко возросла интенсивность дыхания экосистем (хотя фотосинтез тоже продолжался, и даже активнее, чем в предыдущие годы). В результате существенно усилилось выделение СО2 в осенний период. Более того, это усиление почти полностью (на 90%) компенсировало то увеличение связывания СО2, которое произошло за счет более теплой и ранней весны.

Авторы статьи подчеркивают, что если обнаруженные тенденции в изменении сезонной динамики СО2 сохранятся (а, по-видимому, так и будет), то поглощение северными экосистемами углерода может заметно сократиться уже в самое ближайшее время. Уповать на то, что бореальные леса (значительная часть которых находится в России) будут в случае потепления связывать всё большее количество углекислого газа и тем самым противостоять усилению парникового эффекта (и, соответственно, самому потеплению), увы, не приходится.
http://elementy.ru

LiO 14.01.2008 14:56

Убитое сердце крысы оживили в лаборатории

Цитата:

Как сообщает BBC News, американские исследователи из университета Миннесоты (University of Minnesota) смогли заставить биться сердце крысы после того, как из него сначала удалили все сокращающиеся мышечные клетки, а потом пересадили новые.

Эксперимент проводился на сердце взрослой крысы, в котором с помощью химических веществ вытравили всю сердечную ткань, способную к сокращениям. В результате остался только каркас из других тканей, приблизительно сохраняющих форму сердца.

На этот каркас были нанесены клетки сердечной мышцы, взятой у новорожденной крысы. Оказалось, что за четыре дня пересаженные клетки размножились и распространились в поврежденном сердце, а к восьмому дню оно начало сокращаться и перекачивать кровь. Правда, такое сердце работало всего на 2% от мощности нормального крысиного сердца.

Тем не менее, по словам ученых, не связанных с исследованием, новая работа может стать «потенциальным прорывом», позволяющим выращивать необходимые органы для человека. Например, станет возможным взять сердца свиней, которые похожи по размерам на человеческие, убрать свиную мышечную ткань и нарастить человеческую.

Правда, по словам исследователей, на человеке подобные результаты не следует ожидать в ближайшем десятилетии. Сначала необходимо научиться добывать стволовые клетки самого пациента, чтобы новое сердце не было отторгнуто иммунной системой.

Результаты исследований опубликованы в журнале Nature Medicine.
http://www.polit.ru/science/2008/01/...art.popup.html

LiO 17.01.2008 22:08

Вложений: 1
Вложение 40454
Рашид Сюняев. Фото с сайта

Престижная премия по астрономии присуждена двум русским ученым и одному американскому


Цитата:

Шведская Королевская академия наук объявила лауреатов премии Крафурда 2008 года. Лауреатами в области астрономии и математики стали Максим Концевич, Рашид Сюняев и Эдвард Виттен, сообщает академия в своем пресс-релизе.

Премия была учреждена в 1980 году изобретателем искусственной почки Хольгером Крафурдом (Holger Crafoord) и его женой Анной-Гретой (Anna-Greta). Премия вручается ежегодно в одной из номинаций: достижения в астрономии и математике, науках о Земле, науках о живом и изучении заболевания полиартрит. В этом году была очередь номинации астрономии и математики.

Половину премии (250 тысяч долларов) получат американец Эдвард Виттен и работающий во Франции россиянин Максим Концевич за "важный вклад в математику, на который исследователей вдохновила теоретическая физика".

Вторую половину получит россиянин Рашид Сюняев, работающий в России и Германии, "за важнейший вклад в астрофизику высоких энергий и космологию". Особенно подчеркивается значение работ Сюняева по исследованиями черных дыр и нейтронных звезд, а также космического фонового излучения.

Награждение состоится 23 апреля в Королевской академии наук в Стокгольме в присутствии короля Швеции Карла XVI Густава.
http://www.lenta.ru/news/2008/01/17/crafoord/

LiO 22.01.2008 14:48

РАН отмечает 100-летие легендарного физика

Цитата:

В этот день исполняется ровно 100 лет со дня рождения Льва Ландау. Несколько поколений ученых выросло на его многотомном «Курсе теоретической физики». К 19 годам он уже опубликовал четыре работы. Ландау, по словам коллег, всегда безошибочно решал сложнейшие задачи и отличался широтой научных интересов.

Борис Иоффе, член-корреспондент Российской академии наук: «Лев прекрасно знал и любил историю, в этом мы с ним были похожи. Более того, Ландау прекрасно знал химию. В молодости он даже подумывал стать химиком. Должен заметить, что химию мало кто из физиков знает».

Во время сталинских репрессий Ландау арестовали, почти год он провел в тюрьме. Выйти на свободу помогло вмешательство академика Петра Капицы.

Сергей Капица, академик Российской академии естественных наук, телеведущий: «Отец писал очень решительные письма Сталину и Молотову. Он добился освобождения Ландау. Но обвинений в шпионаже с ученого так и не сняли».

После освобождения Ландау привлекли к созданию ядерного оружия. Под его руководством были разработаны принципиально новые методы расчета.

Но сразу после смерти Сталина ученый отказался заниматься атомным проектом. В 1962 году Льву Ландау присвоили Нобелевскую премию за исследование свойств жидкого гелия, передает НТВ.
http://news.ntv.ru/124860/

LiO 22.01.2008 14:55

Вложений: 1
Вложение 41081

Жорес Алферов. Фото с сайта журнала Scientific American

Жорес Алферов возглавил секцию нанотехнологий в РАН


Цитата:

Депутат Госдумы от КПРФ, вице-президент Российской академии наук Жорес Алферов возглавил секцию нанотехнологий в отделении нанотехнологий и информационных технологий РАН, сообщает в понедельник РИА Новости со ссылкой на самого Алферова.

Накануне правительство РФ утвердило поправку к уставу РАН, согласно которой отделение информационных технологий и вычислительных систем преобразовано в отделение нано- и IT-технологий. Об этом стало известно ранее в понедельник. Руководить этим отделением продолжит президент Курчатовского института, секретарь Общественной палаты Евгений Велихов.

В настоящее время Алферов возглавляет комиссию РАН по нанотехнологиям, является председателем Санкт-Петербургского научного центра академии. Он также входит в состав комитета нижней палаты парламента по науке и наукоемким технологиям.
http://www.lenta.ru/news/2008/01/21/nano/


Текущее время: 23:25. Часовой пояс GMT +3.

Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2026, Jelsoft Enterprises Ltd. Перевод: zCarot