Ответ
 
Опции темы
Старый 31.01.2007, 19:34      #1
a2z
Супер-Модератор
 
Аватар для a2z
По умолчанию Тop 10 самых красивых экспериментов


Десятки и сотни тысяч физических экспериментов было поставлено за тысячелетнюю историю науки. Непросто отобрать несколько "самых-самых"», чтобы рассказать о них. Каков должен быть критерий отбора?

Четыре года назад в газете "The New York Times" была опубликована статья Роберта Криза и Стони Бука. В ней рассказывалось о результатах опроса, проведенного среди физиков. Каждый опрошенный должен был назвать десять самых красивых за всю историю физических экспериментов. На наш взгляд, критерий красоты ничем не уступает другим критериям. Поэтому мы расскажем об экспериментах, вошедших в первую десятку по результатам опроса Криза и Бука.


1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами.

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем. — следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам.

Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ(mM/r2), оставалось определить значение гравитационной постоянной γ- Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы — коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звёздам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой — экран. На экране Ньютон наблюдал "радугу": белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей — от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой ещё до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, "примешиваемой" к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный — при наименьшем. Ньютон же проделал дополнительные опыты со скрещёнными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что "никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета". Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц — корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон ("кольца Ньютона"), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся тёмных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Тёмные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провёл в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло ещё в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введён термин "электрон", обозначавший некую частицу — носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта "положительно-отрицательная" система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в "рыхлом" атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома — массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Источник: "Химия и жизнь"
__________________
× Если вы нашли ошибку в моём сообщении, выделите её мышкой и нажмите Alt-F4 ×
× Twitter, LastFm, SCC, What.cd, Tapochek.net ×
a2z вне форума Пол: Мужчина   Ответить с цитированием Вверх
Благодарности: 12
Andrew (31.01.2007), COOPER (03.04.2007), iva (31.01.2007), KRONOS (02.04.2007), NOboDy (31.01.2007), non-nun (02.04.2007), phunky (01.04.2007), Scott (02.04.2007), Selectus (10.04.2007), serzhik (05.04.2007), Vadim (01.02.2007), ZUDen` (31.01.2007)
Старый 31.01.2007, 19:37      #2
Fafnir
Местный
Пользователь Mozilla Firefox
 
Аватар для Fafnir
По умолчанию

Цитата: arhipet2z
массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.
/* ушёл учить физику */
Fafnir вне форума   Ответить с цитированием Вверх
Старый 31.01.2007, 19:41      #3
a2z
Супер-Модератор
 
Аватар для a2z
По умолчанию

Fafnir, надо будет у Резерфорда при встрече спросить
__________________
× Если вы нашли ошибку в моём сообщении, выделите её мышкой и нажмите Alt-F4 ×
× Twitter, LastFm, SCC, What.cd, Tapochek.net ×
a2z вне форума Пол: Мужчина   Ответить с цитированием Вверх
Старый 31.01.2007, 19:56      #4
karax
Местный
[Дивизион]
 
Аватар для karax
По умолчанию

кажись тут речь про нанометры
karax вне форума   Ответить с цитированием Вверх
Благодарности: 1
Fafnir (31.01.2007)
Старый 31.01.2007, 20:42      #5
avax
Пользователь
 
Аватар для avax
По умолчанию

там степени
avax вне форума Пол: Мужчина   Ответить с цитированием Вверх
Старый 31.01.2007, 21:07      #6
Andrew
Супер-Модератор
 
Аватар для Andrew
По умолчанию ...

Чем дальше читаешь, тем громче трещит голова

**вспоминает интересные уроки Физики в школе. Пользуясь случаем, передаю привет Тамаре Петровне
__________________
Любовь правит.

Последний раз редактировалось Andrew; 31.01.2007 в 21:07.
Andrew вне форума Пол: Мужчина   Ответить с цитированием Вверх
Старый 01.04.2007, 14:56      #7
The FaG
Новичок
По умолчанию

ух, а продолжение будет ? мне оч понравилось, особенно про 1 опыт.. это ж подумать только, скока мозгов иметь надо
The FaG вне форума   Ответить с цитированием Вверх
Старый 02.04.2007, 01:11      #8
Mess
Местный
По умолчанию

Очень красивые эксперименты ставил Тесла. Вот напимер на что способен его трансформатор.




Изображения
Тип файла: jpg 1654624cd8dc40337e5120c6e36cf474.jpg (48.9 Кб, 45 просмотров)
Тип файла: jpg d56ea4683d19154d717e3e9a7d7a8904.jpg (38.9 Кб, 35 просмотров)
Тип файла: jpg fbcc7205366376467e375c26f5692974.jpg (54.5 Кб, 34 просмотров)
Mess вне форума   Ответить с цитированием Вверх
Благодарности: 10
bart1k (02.04.2007), Frosty (03.04.2007), Grinch (02.04.2007), Hellsing (02.04.2007), Necros (04.04.2007), non-nun (02.04.2007), phunky (02.04.2007), Scott (02.04.2007), SenSey (02.04.2007), Zion (22.04.2008)
Старый 02.04.2007, 16:16      #9
The FaG
Новичок
По умолчанию

Mess, ух ты круто! есть ли подробная информация насчет сеих генераторов (вроде так правельнее)?
The FaG вне форума   Ответить с цитированием Вверх
Старый 03.04.2007, 00:38      #10
Mess
Местный
По умолчанию

Не правильнее трансформатор
Инфа есть конечно. В интернете введи трансформатор + Тесла + катушка Тесла, получишь кучу инфы (Но вот про устройство трансформатора наврядли, а если и найдешь, то чтобы сделать его потребуются больше, чем просто знания).

P.S. Линки и инфу не кидаю, так как на данный момент у меня лично, ничего нет. Если будет - поделюсь
Mess вне форума   Ответить с цитированием Вверх
Ответ


Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)
 

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
10 самых причудливых созданий планеты Nurse Флора и фауна 3 09.06.2008 01:04
40 самых красивых мест на Земле Albertik Глобус 1 25.01.2008 08:09
Десятка самых изобретательных мошенников iva На завалинке 0 11.03.2007 14:11
25 самых популярных актеров 2006 года. iva Киноклуб 0 28.12.2006 12:15
Рейтинг самых богатых вымышленных существ. iva На завалинке 2 23.11.2006 13:17


Обратная связь
Текущее время: 19:00. Часовой пояс GMT +3.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot